Skip to main content
Log in

Production of Ultra-Pure Hydrogen for Fuel Cells Using a Module Based on Nickel Capillaries

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, an experimental module for hydrogen purification based on nickel capillaries was fabricated. The module was tested by varying the temperature and the difference in the partial pressure of hydrogen on the supply and permeate sides of the capillaries. The maximum hydrogen flow obtained using a module based on 7 nickel capillaries with a wall thickness of 50 µm was 37.2 mL/min at a temperature of 900°C and a hydrogen pressure of 0.9 atm. The stability of the hydrogen flow to thermal cycling in a temperature range 600–800°С for 55 h was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Li, Q., He, R., Gao, J.-A., Jensen, J. O., and Bjerrum, N., The CO poisoning effect in PEMFCs operational at temperatures up to 200 degrees C., J. Electrochem. Soc., 2003, vol. 150(12), p. A1599.

    Article  CAS  Google Scholar 

  2. Wang, L., Zhou, Y., Yang, Y., Subramanian, A., Kisslinger, K., Zuo, X., Chuang, Ya-C., Yin, Y., Nam, C.-Y., and Rafailovich, M. H., Suppression of Carbon Monoxide Poisoning in Proton Exchange Membrane Fuel Cells via Gold Nanoparticle/Titania Ultrathin Film Heterogeneous Catalysts, ACS Appl. Energy Mater., 2019, vol. 2 (5), p. 3479.

    CAS  Google Scholar 

  3. Valdés-López, V.F., Mason, T., Shearing, P.R., and Brett, D.J.L., Carbon monoxide poisoning and mitigation strategies for polymer electrolyte membrane fuel cells—A review, Progress in Energy and Combustion Sci., 2020, vol. 79, p. 100842.

    Article  Google Scholar 

  4. Kalman, V., Voigt, J., Jordan, C., and Harasek, M., Hydrogen Purification by Pressure Swing Adsorption: High-Pressure PSA Performance in Recovery from Seasonal Storage, Sustainability, 2022, vol. 14, p. 14037.

    Article  CAS  Google Scholar 

  5. Luberti, M. and Ahn, H., Review of Polybed pressure swing adsorption for hydrogen purification, Intern. J. Hydrogen Energy, 2022, vol. 47, p. 10911.

    Article  CAS  Google Scholar 

  6. Du, Z., Liu, C., Zhai, J., Guo, X., Xiong, Y., Su, W., and He, G., A Review of Hydrogen Purification Technologies for Fuel Cell Vehicles, Catalysts, 2021, vol. 11, p. 393.

    Article  CAS  Google Scholar 

  7. Mironova, E.Yu., Ermilova, M.M., Orekhova, N.V., Basov, N.L., and Yaroslavtsev, A.B., Hydrogen Production by Ethanol Steam Reforming in the Presence of Pd-, Pt-, Ru-, and Ni-Containing Nanodiamonds in Conventional and Membrane Reactors, Membranes and Membr. Technol., 2019, vol. 1, p. 246.

    Article  CAS  Google Scholar 

  8. Sazali, N., Mohamed, M.A., and Salleh, W.N.W., Membranes for hydrogen separation: a significant review, Intern. J. Adv. Manuf. Technol., 2020, vol. 107, p. 1859.

    Article  Google Scholar 

  9. Ockwig, N.W. and Nenoff, T., Membranes for Hydrogen Separation, Chem. Rev., 2007, vol. 107, p. 4078.

    Article  CAS  PubMed  Google Scholar 

  10. Lu, H.T., Li, W., Miandoab, E.S., Kanehashi, S., and Hu, G., The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review, Front Chem. Sci. Eng., 2021, vol. 15, p. 464.

    Article  CAS  PubMed  Google Scholar 

  11. Rahimpour, M.R., Samimi, F., Babapoor, A., Tohi-dian, T., and Mohebi, S., Palladium membranes applications in reaction systems for hydrogen separation and purification: A review, Chem. Engineering and Processing: Process Intensification, 2017, vol. 121, p. 24.

    Article  CAS  Google Scholar 

  12. Alique, D., Martinez-Diaz, D., Sanz, R., and Calles, J.A., Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production, Membranes, 2018, vol. 8, p. 5.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yuan, M., Lee, K., Van Campen, D.G., Liguori, S., Toney, M.F., and Wilcox, J., Hydrogen Purification in Palladium-Based Membranes: An Operando X-ray Diffraction Study, Ind. Eng. Chem. Res., 2019, vol. 58, p. 926.

    Article  CAS  Google Scholar 

  14. Leimert, J.M., Karl, J., and Dillig, M., Dry Reforming of Methane Using a Nickel Membrane Reactor, Processes, 2017, vol. 5, p. 82.

    Article  Google Scholar 

  15. Leimert, J. M., Dillig, M., and Karl, J., Hydrogen production from solid feedstock by using a nickel membrane reformer, J. Membr. Sci., 2018, vol. 548, p. 11.

    Article  CAS  Google Scholar 

  16. Ernst, B., Haag, S., and Burgard, M., Perm selectivity of a nickel/ceramic composite membrane at elevated temperatures: a new prospect in hydrogen separation, J. Membr. Sci., 2007, vol. 288, p. 208.

    Article  CAS  Google Scholar 

  17. Wang, M., Zhou, Y., Tan, X., Gao, J., and Liu, S., Nickel hollow fiber membranes for hydrogen separation from reformate gases and water gas shift reactions operated at high temperatures, J. Membr. Sci., 2019, vol. 575 p. 89.

    Article  CAS  Google Scholar 

  18. Meng, B., Tan, X., Meng, X., Qiao, S., and Liu, S., Porous and dense Ni hollow fibre membranes, J. Alloys and Compounds, 2009, vol. 470, p. 461.

    Article  CAS  Google Scholar 

  19. Suzuki, A. and Yukawa, H., A Review for Consistent Analysis of Hydrogen Permeability through Dense Metallic Membranes, Membranes, 2020, vol. 10, p. 120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The manufacture of a module based on nickel capillaries was carried out as part of the Russian Science Foundation project no. 22-79-00220. The design and testing of the membrane module was carried out as part of the state assignment under agreement no. 075-03-2022-424/3 (Youth Laboratory “Materials and Technologies of Hydrogen Energy”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. S. Tropin or A. P. Nemudry.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Based on the materials reported at the Second School for Young Scientists “Electrochemical Devices: Processes, Materials, Technologies” (Novosibirsk, October 28–30, 2022)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tropin, E.S., Shubnikova, E.V., Bragina, O.A. et al. Production of Ultra-Pure Hydrogen for Fuel Cells Using a Module Based on Nickel Capillaries. Russ J Electrochem 60, 30–35 (2024). https://doi.org/10.1134/S1023193524010129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193524010129

Keywords:

Navigation