Skip to main content
Log in

Synthesis and Study of the Physicochemical Properties of Composite Solid Electrolytes (C4H9)3CH3NBF4–Cnanodiamonds

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The paper presents the results of studies of the structural, thermal, and transport properties of solid composite electrolytes (1 – x)(C4H9)3CH3NBF4xCND (where CND are nanodispersed diamonds, 0 ≤ x < 1, x is the mole fraction). It was shown by the Pawley method that the crystal structure of the low-temperature (C4H9)3CH3NBF4 phase is described by the space symmetry group P42/ncm. The addition of an inert nanodiamond additive led to an increase in the electric conductivity of the composite electrolyte by four orders of magnitude to 1.3 × 10–3 S/cm at 145°C and at x = 0.98. The theoretical dependences adequately describe the experimental data in the concentration range 0 ≤ x ≤ 0.99 at temperatures of 84 and 127°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Ivanov-Schitz, A.K. and Murin, I.V., Ionika tverdogo tela (Solid State Ionics), St. Petersburg: Sankt-Peterburg. Gos. Univ., 2010, vol. 2.

  2. Uvarov, N.F., Kompozitsionnye tverdye elektrolity (Composite Solid Electrolytes), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2008.

  3. Zhang, Z., Wang, X., Li, X., Zhao, J., Liu, G., Yu, W., Dong, X., and Wang, J., Review on composite solid electrolytes for solid-state lithium-ion batteries, Mater. Today Sustain., 2023, in press.

  4. Xu, L., Li, J., Shuai, H., Luo, Zh., Wang, B., Fang, S., Zou, G., Hou, H., Peng, H., and Ji, X., Recent advances of composite electrolytes for solid-state Li batteries, J. Energy Chem., 2022, vol. 67, p. 524.

    Article  CAS  Google Scholar 

  5. Jian, S., Cao, Y., Feng, W., Yin, G., Zhao, Y., Lai, Y., Zhang, T., Ling, X., Wu, H., Bi, H., and Dong, Y., Recent progress in solid polymer electrolytes with various dimensional fillers: A review, Mater. Today Sustain., 2022, vol. 20, p. 100224.

    Article  Google Scholar 

  6. Sun, Y.-Y., Zhang, Q., Yan, L., Wang, T.-B., and Hou, P.-Y., A review of interfaces within solid-state electrolytes: Fundamentals, issues and advancements, J. Chem. Eng., 2022, vol. 437, no. 1, 135179.

    Article  CAS  Google Scholar 

  7. Pringle, J.M., Recent progress in the development and use of organic ionic plastic crystal electrolytes, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 1339.

    Article  CAS  PubMed  Google Scholar 

  8. MacFarlane, D.R. and Forsyth, M., Plastic crystal electrolyte materials: New perspectives on solid state ionics, Adv. Mater., 2001, vol.13, nos. 12–13, p. 957.

    Article  CAS  Google Scholar 

  9. Sherwood, J.N., The Plastically Crystalline State: Orientationally Disordered Crystals, Wiley, 1979, p. 416.

    Google Scholar 

  10. Huang, J., Hill, A., Forsyth, M., MacFarlane, D., and Hollenkamp, A., Conduction in ionic organic plastic crystals: The role of defects, Solid State Ionics, 2006, vol. 177, p. 2569.

    Article  CAS  Google Scholar 

  11. Pringle, J.M., Howlett, P.C., MacFarlane, D.R., and Forsyth, M., Organic ionic plastic crystals: Recent advances, J. Mater. Chem., 2010, vol. 20, p. 2056.

    Article  CAS  Google Scholar 

  12. MacFarlane, D.R., Huang, J., and Forsyth, M., Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries, Nature, 1999, vol. 402, p. 792.

    Article  CAS  Google Scholar 

  13. Zhou, Zh.-B. and Matsumoto, H., Lithium-doped, organic ionic plastic crystal electrolytes exhibiting high ambient-temperature conductivities, Electrochem. Commun., 2007, vol. 9, p. 1017.

    Article  CAS  Google Scholar 

  14. Howlett, P.C., Shekibi, Y., MacFarlane, D.R., and Forsyth, M., Li-Metal symmetrical cell studies using ionic organic plastic crystal electrolyte, Adv. Eng. Mater., 2009, vol. 11, no. 12, p. 1044.

    Article  CAS  Google Scholar 

  15. Basile, A., Hilder, M., Makhlooghiazad, F., Pozo-Gonzalo, C., MacFarlane, D.R., Howlett, P.C., and Forsyth, M., Ionic liquids and organic ionic plastic crystals: Advanced electrolytes for safer high performance sodium energy storage technologies, Adv. Energy Mater., 2018, vol. 8, 1703491.

    Article  Google Scholar 

  16. Rana, U.A., Forsyth, M., MacFarlane, D.R., and Pringle, J.M., Toward protic ionic liquid and organic ionic plastic crystal electrolytes for fuel cells, Electrochim. Acta, 2012, vol. 84, p. 213.

    Article  CAS  Google Scholar 

  17. Luo, J., Jensen, A.H., Brooks, N.B., Sniekers, J., Knipper, M., Aili, D., Li, Q., Vanroy, B., Wübbenhorst, M., et al., 1, 2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells, Energy Environ. Sci., 2015, vol. 8 (4), p. 1276.

    Article  CAS  Google Scholar 

  18. Abouimrane, A., Belharouak, I., and Abu-Lebdeh, Y.A., An all-solid-state electrochemical double-layer capacitor based on a plastic crystal electrolyte, Front. Energy Res., 2015, vol. 3, p. 1.

    Article  Google Scholar 

  19. Uvarov, N.F., Iskakova, A.A., Bulina, N.V., Gerasimov, K.B., Slobodyuk, A.B., and Kavun, V.Ya., Ion conductivity of the plastic phase of the organic salt [(C4H9)4N]BF4, Russ. J. Electrochem., 2015, vol. 51, p. 491.

    Article  CAS  Google Scholar 

  20. Uvarov, N.F., Ulihin, A.S., and Mateyshina, Yu.G., Nanocomposite alkali-ion solid electrolytes, in Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications, Sadykov, V.A., Ed., Amsterdam: Elsevier, 2019, ch. 11, p. 393.

    Google Scholar 

  21. Maier, J., Ionic conduction in space charge regions, Prog. Solid State Chem., 1995, vol. 23, p. 171.

    Article  CAS  Google Scholar 

  22. Shekibi, Y., Gray-Weale, A., MacFarlane, D.R., Hill, A.J., and Forsyth, M., Nanoparticle enhanced conductivity in organic ionic plastic crystals: Space charge versus strain induced defect mechanism, J. Phys. Chem. C, 2007, vol. 111, p. 11463.

    Article  CAS  Google Scholar 

  23. Ulihin, A.S., Uvarov, N.F., Rabadanov, K.Sh., Gafurov, M.M., and Gerasimov, K.B., Thermal, structural and transport properties of composite solid electrolytes (1 – x)(C4H9)4NBF4xAl2O3, Solid State Ionics, 2022, vol. 378, p. 115889.

    Article  CAS  Google Scholar 

  24. Adebahr, J., Ciccosillo, N., Shekibi, Y., MacFarlane, D.R., Hill, A.J., and Forsyth, M., The “filler-effect” in organic ionic plastic crystals: enhanced conductivity by the addition of nano-sized TiO2, Solid State Ionics, 2006, vol. 177, nos. 9–10, p. 827.

    Article  CAS  Google Scholar 

  25. Ulikhin, A.S., Uvarov, N.F., Gerasimov, K.B., Iskakova, A.A., and Mateishina, Yu.G., Physicochemical properties of (CH3)2NH2Cl–Al2O3 Composites, Russ. J. Electrochem., 2017, vol. 53, p. 834.

    Article  CAS  Google Scholar 

  26. Mateyshina, Y.G., Alekseev, D.V., and Uvarov, N.F., Ionic transport in CsNO2-based nanocomposites with inclusions of surface functionalized nanodiamonds, Nanomaterials, 2021, vol. 11, p. 414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alekseev, D.V., Mateyshina, Yu.G., and Uvarov, N.F., Transport properties of LiClO4–nanodiamond composites, Russ. J. Electrochem., 2021, vol. 57, p. 1037.

    Article  CAS  Google Scholar 

  28. Mateyshina, Yu., Alekseev, D., and Uvarov, N., The effect of the nanodiamonds additive on ionic conductivity of silver iodide, Mater. Today: Proc., 2020, p. 373.

  29. Alekseev, D.V., Mateyshina, Yu.G., and Uvarov, N.F., Effect of nanodiamond additives on the ionic conductivity of the (C2H5)3CH3NBF4 organic salt, Russ. J. Electrochem., 2022, vol. 58, no. 7, p. 594.

    Article  CAS  Google Scholar 

  30. Pawley, G.S., Unit-cell refinement from powder diffraction scans, J. Appl. Crystallogr., 1981, vol. 14, p. 357.

    Article  CAS  Google Scholar 

  31. https://abcr.com/ru_en/ab333813.

  32. Uvarov, N.F. and Boldyrev, V.V., Size effects in chemistry of heterogeneous systems, Russ. Chem. Rev., 2001, vol. 70, p. 265.

    Article  CAS  Google Scholar 

  33. Uvarov, N.F., Vanek, P., Yuzyuk, Yu.I., Zelezny, V., Studnicka, V., Bokhonov, B.B., Dulepov, V.E., and Petzelt, J., Properties of rubidium nitrate in ion-conducting RbNO3–Al2O3 nanocomposites, Solid State Ionics, 1996, vol. 90, p. 201.

    Article  CAS  Google Scholar 

  34. Uvarov, N.F., Composite solid electrolytes: Recent advances and design strategies, J. Solid State Electrochem., 2011, vol.15, p. 367.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 20-13-00302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Mateyshina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Based on the materials reported at the Second Young Scientists School “Electrochemical Devices: Processes, Materials, Technologies” (Novosibirsk, October 28–30, 2022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stebnitsky, I.A., Uvarov, N.F. & Mateyshina, Y.G. Synthesis and Study of the Physicochemical Properties of Composite Solid Electrolytes (C4H9)3CH3NBF4–Cnanodiamonds. Russ J Electrochem 60, 18–24 (2024). https://doi.org/10.1134/S1023193524010105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193524010105

Keywords:

Navigation