Skip to main content
Log in

Study of High-Temperature Oxygen Release from Strontium Cobaltite in Quasi-Equilibrium Regime

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Results of high-temperature oxygen desorption from SrCoO3 – δ-oxide with mixed conductivity composed of obtained using an original quasi-equilibrium oxygen release technique are shown. The measurements are carried out with a characterized powder sample in a tubular reactor. The equilibrium phase diagram of the oxide in the 600–850°C temperature range and partial pressure of oxygen 0.2–6 × 10–5 atm is constructed. With the help of literature data, a correlation of phase diagram regions with their corresponding structures is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Teraoka, Y., Zhang, H.M., Furukawa, S., and Yamazoe, N., Oxygen permeation through perovskite-type oxides, Chem. Lett., 1985, p. 1743.

  2. Shao, Z., et al., Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe 0.2O3 – δ oxygen membrane, J. Membr. Sci., 2000, vol. 172, p. 177.

    Article  CAS  Google Scholar 

  3. Asadi, A.A., et al., Preparation and oxygen permeation of La0.6Sr0.4Co0.2Fe0.8O3 – δ (LSCF) perovskite-type membranes: experimental study and mathematical modeling, Industrial Engng. Chem. Res., 2012, vol. 51, no. 7, p. 3069.

    Article  CAS  Google Scholar 

  4. Bouwmeester, H.J. and Gellings, P.J., The CRC handbook of solid-state electrochemistry, 1997, no. 544.6 CRC, p. 481-553.

  5. Sunarso, J., Baumann, S., Serra, J.M., Meulenberg, W.A., Liu, S., and Lin, Y.S., Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Membr. Sci., 2008, vol. 320, p. 13.

    Article  CAS  Google Scholar 

  6. Marques, F.M.B., Kharton, V.V., Naumovich, E.N., Shaula, A.L., Kovalevsky, A.V., and Yaremchenko, A.A., Oxygen ion conductors for fuel cells and membranes: selected developments, Solid State Ionics, 2006, vol. 177, p. 1697.

    Article  CAS  Google Scholar 

  7. Pei, S., Kleefisch, M., Kobylinski, T.P., Faber, J., Udovich, C.A., Zhang-McCoy, V., Dabrowski, B., Balachandran, U., Mieville, R.L., and Poeppel, R.B., Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas, Catal. Lett., 1994, vol. 30, p. 201.

    Article  CAS  Google Scholar 

  8. Ten Elshof, J.E., van Hassel, B.A., and Bouwmeester, H.J.M., Activation of methane using solid oxide membranes, Catal. Today, 1995, vol. 25, p. 397.

    Article  CAS  Google Scholar 

  9. Leo, A., Liu, Sh., and Diniz da Costa, J.C., Development of mixed conducting membranes for clean coal energy delivery, Int. J. Greenh. Gas Con., 2009, vol. 3, p. 357.

    Article  CAS  Google Scholar 

  10. Mahato, N., et al., Progress in material selection for solid oxide fuel cell technology: A review, Progress Mater. Sci., 2015, vol. 72, p. 141-337.

    Article  CAS  Google Scholar 

  11. Othman, M.H.D., et al., High-performance, anode-supported, microtubular SOFC prepared from single-step-fabricated, dual-layer hollow fibers, Adv. Mater., 2011, vol. 23, no. 21, p. 2480.

    Article  CAS  PubMed  Google Scholar 

  12. Pusz, J., Mohammadi, A., and Sammes, N.M., Fabrication and performance of anode-supported micro-tubular solid oxide fuel cells, J. Electrochem. Energy Conversion Storage, 2006, vol. 3, p. 482.

    CAS  Google Scholar 

  13. Mahata, T., et al., Fabrication of Ni-YSZ anode supported tubular SOFC through iso-pressing and co-firing route, Int. J. Hydrogen Energy, 2012, vol. 37, no. 4, p. 3874.

    Article  CAS  Google Scholar 

  14. Zhang, L., et al., Fabrication and characterization of anode-supported tubular solid-oxide fuel cells by slip casting and dip coating techniques, J. Amer. Ceram. Soc., 2009, vol. 92, no. 2, p. 302.

    Article  CAS  Google Scholar 

  15. Shao, Z. and Haile, S.M., A high-performance cathode for the next generation of solid-oxide fuel cells, Nature, 2004, vol. 431, p. 170.

    Article  CAS  PubMed  Google Scholar 

  16. Popov, M.P., Starkov, I.A., Chizhik, S.A., Bychkov, S.F., and Nemudry, A.P., Oxygen Exchange in Nonstoichiometric Oxides with Mixed Conductivity: New Experimental Techniques and Methodology for Obtaining/Analyzing Equilibrium and Kinetic Data, Novosibirsk: RAS, Siber. Branch, 2019.

    Google Scholar 

  17. Starkov, I., Bychkov, S., Matvienko, A., and Nemudry, A., Oxygen release technique as a method for the determination of “δ–pO2T” diagrams for MIEC oxides, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 5527.

    Article  CAS  PubMed  Google Scholar 

  18. Chizhik, S.A. and Nemudry, A.P., Nonstoichiometric oxides as a continuous homologous series: linear free-energy relationship in oxygen exchange, Phys. Chem. Chem. Phys., 2018, vol. 20, p. 18447.

    Article  CAS  PubMed  Google Scholar 

  19. Chizhik, Stanislav A., Bychkov, Sergey F., Voloshin, Bogdan V., Popov, Mikhail P., and Nemudry, Alexander P., The Brønsted–Evans–Polanyi relationship in oxygen exchange of fuel cell cathode material SrCo0.9Ta0.1O3 - δ with the gas phase, Phys. Chem. Chem. Phys., 2021, vol. 23, p. 1072.

    Article  CAS  PubMed  Google Scholar 

  20. Chizhik, S.A., Kovalev, I.V., Popov, M.P., Bychkov, S.F., and Nemudry, A.P., Study of the isobaric and isostoichiometric kinetic parameters of oxygen exchange reaction of SrFe0.98Mo 0.02O3 – δ MIEC perovskite, Chem. Engineering J., vol. 445, 1 October 2022, 136724.

    Article  CAS  Google Scholar 

  21. Chizhik, S.A., Popov, M.P., Kovalev, I.V., Bychkov, S.F., and Nemudry, A.P., Comparison of stationary and transient kinetic methods in determining the rate of surface exchange reaction between molecular oxygen and MIEC perovskite, Chem. Engng. J., 2022, vol. 450, 137970.

    Article  CAS  Google Scholar 

  22. Watanabe, H., Magnetic properties of perovskites containing Strontium I. Strontium-rich ferrites and cobaltites, J. Phys. Soc. Japan, 1957, vol. 12, p. 515.

    Article  CAS  Google Scholar 

  23. Watanabe, H. and Takeda, T., in: Y. Hoshino, et al. (Eds.), Proc. Int. Conf. Ferrites (Kyoto, Japan, 1970), Baltimore, MD: Univ. Park Press, 1971.

  24. Grenier, J.C., Ghodbane, S., Demazeau, G., Pouchard, M., and Hagenmuller, P., Le cobaltite de strontium Sr2Co2O5: Caracterisation et proprietes magnetiques, Mat. Res. Bull., 1979, vol. 14, p. 831.

    Article  CAS  Google Scholar 

  25. Grenier, J.C., Fournes, L., Pouchard, M., and Hagenmuller, P., A Mössbauer resonance investigation of 57Fe doped Sr2Co2O5, Mat. Res. Bull., 1986, vol. 21, p. 441.

    Article  CAS  Google Scholar 

  26. Takeda, T., Yamaguchi, Y., and Watanabe, H., Magnetic Structure of SrCoO2.5, J. Phys. Soc. Japan, 1972, vol. 33, p. 970.

    Article  CAS  Google Scholar 

  27. Takeda, Y., Kanno, R., Takada, T., Yamamoto, O., Takano, M., and Bando, Y., Phase relation and oxygen-non-stoichiometry of perovskite-like compound SrCoOx (2.29 < x > 2.80), Z. Anorg. Allg. Chem., 1986, vol. 540-541, p. 259.

    Article  CAS  Google Scholar 

  28. Bezdicka, M. P., Oxydation de Sr2Co2O5 par voie electrochimique, Ph.D. thesis, 1993.

  29. Vashook, V.V., Zinkevich, M.V., and Zonov, Yu.G., Phase relations in oxygen-deficient SrCoO2.5 – δ, Solid State Ionics, 1999, vol. 116, p. 129.

    Article  CAS  Google Scholar 

  30. Alario-Franco, M.A., Henche, M.J.R., Regi, M.V., Calbet, J.M.G., Grenier, J.C., Wattiaux, A., and Hagenmuller, P., Microdomain texture and oxygen excess in the calcium-lanthanum ferrite: Ca2LaFe3O8, J. Solid State Chem., 1983, vol. 46, p. 23.

    Article  CAS  Google Scholar 

  31. Alario-Franco, M.A., Calbet, J.M.G., Regi, M.V., and Grenier, J.C., Brownmillerite-type microdomains in the calcium lanthanum ferrites: CaxLa1 – xFeO3 – y: I. 2/3 < x < 1, J. Solid State Chem., 1983, vol. 49, p. 219.

    Article  CAS  Google Scholar 

  32. Parras, M., Regi, M.V., Calbet, J.M.G., Alario-Franco, M.A., Grenier, J.C., and Hagenmuller, P., A reassessment of Ba2Fe2O5, Mat. Res. Bull., 1987, vol. 22, p. 1413.

    Article  CAS  Google Scholar 

  33. Grenier, J.C., Ea, N., Pouchard, M., and Hagenmuller, P., Structural transitions at high temperature in Sr2Fe2O5, J. Solid State Chem., 1985, vol. 58, p. 243.

    Article  CAS  Google Scholar 

  34. Shaplygin, I.S. and Lazarev, V.B., The SrCoO3 preparation and properties, Zh. Neorg. Khim. 1985, vol. 30, no. 12, p. 3214.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 22-73-10200, https://rscf.ru/project/22-73-10200/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Popov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Based on the materials reported at the Second School for Young Scientists “Electrochemical Devices: Processes, Materials, Technologies” (Novosibirsk, October 28–30, 2022)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, M.P., Bagishev, A.S. & Nemudry, A.P. Study of High-Temperature Oxygen Release from Strontium Cobaltite in Quasi-Equilibrium Regime. Russ J Electrochem 60, 25–29 (2024). https://doi.org/10.1134/S1023193524010075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193524010075

Keywords:

Navigation