Skip to main content
Log in

Novel Electrochemical Coupled Three-in-One Sensing System for Transforming Organic Pollutants into Green Fuels and Their Sensing

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The organic pollutants present in wastewater produce greenhouse gas, CO2. Effective utilization of CO2 into valuable green fuels and its sensing is focused research area. Aiming above, this work is focused on fabrication of electrochemical coupled sensing system for degradation of 4-nitrophenol to CO2 from wastewater samples, electrochemical reducing system for transforming CO2 to alcohols and selective amperometric sensing system for quantifying alcohols. A graphene anchored iron oxide electrode was used as an electrocatalyst to facilitate the electrochemical oxidation process to mineralized organic pollutants into water and CO2. The CuO film on silicon substrate was used in cathodic compartment for converting CO2 to methanol and ethanol. Alcohol oxidase modified Au–Cu nanoparticle modified pencil graphite was selective sensing and quantifying the methanol and ethanol. The experimental results revealed that, graphene anchored iron oxide showed maximum degeneration of 4-nitrophenol 72% at 0.9 V. Furthermore, simultaneous reduction of CO2 at cathode gave good yield of the liquid fuels CH3OH and C2H5OH were 105.0 and 90.0 μmol/L respectively. In addition, Alcohol oxidase modified Au–Cu nanoparticles modified pencil graphite biosensor displays a linear response to both methanol and ethanol in the range 0.250–850 μmol/L with a detection limit of 0.07 μmol/L (S/N = 3) (RSD = 0.004 μA) and 0.7–800 μmol/L with detection limit of 0.068 μmol/L (S/N = 3) (RSD = 0.005 μA) with >40% quantitative yield. The response time is less than 50 s at ambient conditions. Consequently, the ethanol and methanol yield were obtained 30.0%. Our developed three-in-one provides a convenient, simple and reliable method to remediate polluted water and utilizing CO2 into green fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Hala, B. and Mehmet, A., The effect of energy consumption and economic growth on environmental sustainability in the GCC countries: does financial development matter? Energies, 2021, vol. 14, p. 1.

    Google Scholar 

  2. Muhammad, Z.R., Abdul, M.N., Wanjun, X., Majid, I., Hafiz, M.S., and Umer, S., Does economic complexity matter for environmental sustainability? Using ecological footprint as an indicator, Environ. Dev. Sustainability, 2022, vol. 24, p. 4623.

    Article  Google Scholar 

  3. Jian-Ping, Z., Ying, C., Shan-Shan, L., Qiu-Ju, X., Wen-Hua, D., Xu-Biao, L., Wei-Li, D., Xiao, X., Jin-Ming, L., and John, C., Electrochemical oxidation and advanced oxidation processes using a 3D hexagonal Co3O4 array anode for 4-nitrophenol decomposition coupled with simultaneous CO2 conversion to liquid fuels via a flower-like CuO cathode, Water Res., 2019, vol. 150, p. 330 .

    Article  Google Scholar 

  4. Wen, Y., Schoups, G., and Van de Giesen, N., Organic pollution of rivers: combined threats of urbanization, livestock farming and global climate change, Sci. Rep., 2017, vol. 7, p. 1.

    Google Scholar 

  5. James, H., Katherine, C.-H., Erica, O., Rob, B., and Adolf, S., Impacts and implications of climate change on wastewater systems: a New Zealand perspective, Clim. Risk Manag., 2021, vol. 31, p. 1.

    Google Scholar 

  6. Warish, A., Nicola, A., Janette, E., Kyle, B., Aaron, B., Jake, W.O., Phil, M.C., Masaaki, K., Stuart, L.S., Li Jiaying., Ben, T., Rory, V., Wendy, J.M.S., Julian, Z., Leanne, D., Philip, H., Kevin, V.T., and Jochen, F.M., First confirmed detection of SARS-CoV-2 in untreated wastewater inAustralia: a proof of concept for the wastewater surveillance of COVID-19 in the community, Sci. Total Environ., 2020, vol. 728, p. 1.

    Google Scholar 

  7. Bogler, A., Packman, A., Furman, A., et al., Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic, Nat. Sustainability, 2020, vol. 3, p. 981.

    Article  Google Scholar 

  8. Wang, Q., Warnan, J., Rodriguez-Jimenez, S., Leung, J.J., Kalathil, S., Andrei, V., Domen, K., and Reisner, E., Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water, Nat. Energy, 2020, vol. 5, p. 703.

    Article  CAS  Google Scholar 

  9. Wei, F., Zhang, H., Ren, Q., Chen, H., Yang, L., Ding, B., Yu, M., and Liang, Z., Removal of organic contaminants from wastewater with GO/MOFs composites, PLoS ONE, 2021, vol. 16, p. 1.

    Article  CAS  Google Scholar 

  10. Chidambaram, T., Dyuti, B., Camilah, D.P., and Christopher, J.A., Electrochemical degradation of emerging pollutants via laser-induced graphene electrodes, Chem. Eng. J. Adv., 2021, vol. 8, p. 1.

    Google Scholar 

  11. Alonso-Navarro, M.J., Photocatalytic degradation of organic pollutants through conjugated poly(azomethine) networks based on terthiophene-naphthalimide assemblies, RSC Adv., 2021, vol. 11, p. 2701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chengli, Z., Ronghua, M., Qi, W., Mingrui, Y., Rui, C., and Xiaonan, Z., Photocatalytic degradation of organic pollutants in wastewater by heteropolyacids: a review, J. Coord. Chem., 2021, vol. 74, p. 1751.

    Article  Google Scholar 

  13. Li, S., Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: a review, J. Environ. Chem. Eng., 2021, vol. 9, p. 1.

    CAS  Google Scholar 

  14. Usman, M., Humayun, M., Garba, M.D., Ullah, L., Zeb, Z., Helal, A., Suliman, M.H., Alfaifi, B.Y., Iqbal, N., Abdinejad, M., Tahir, A.A., and Ullah, H., Electrochemical reduction of CO2: a review of cobalt based catalysts for carbon dioxide conversion to fuels, Nanomaterials, 2021, vol. 11, p. 1.

    Article  Google Scholar 

  15. Kang, X., Wang, B., Hu, K., Lyu, K., Han, X., Spencer, B.F., Frogley, M.D., Tuna, F., McInnes, E.J.L., Dryfe, R.A.W., Han, B., Yang, S., and Schröder, M., Quantitative electro-reduction of CO2 to liquid fuel over electro-synthesized metal-organic frameworks, J. Am. Chem. Soc., 2020, vol. 142, p. 17384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang, K.D., Lee, C.W., Jin, K., Im, S.W., and Nam, K.T., Current status and bioinspired perspective of electrochemical conversion of CO2 to a long-chain hydrocarbon, J. Phys. Chem. Lett., 2017, vol. 8, p. 538.

    Article  CAS  PubMed  Google Scholar 

  17. Reller, C., Krause, R., Volkova, E., Schmid, B., Neubauer, S., Rucki, A., Schuster, M., and Schmid, G., Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density, Adv. Energy Mater., 2017, vol. 7, p. 1.

    Article  Google Scholar 

  18. Hoang, T.T.H., Ma, S., Gold, J.I., Kenis, P.J.A., and Gewirth, A.A., Nano porous copper films by additive-controlled electrodeposition: CO2 reduction catalysis, ACS Catal., 2017, vol. 7, p. 3313.

    Article  CAS  Google Scholar 

  19. Gao, S., Lin, Y., Jiao, X., Sun, Y., Luo, Q., Zhang, W., Li, D., Yang, J., and Xie, Y., Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel, Nature, 2016, vol. 529, p. 68.

    Article  CAS  PubMed  Google Scholar 

  20. Panizza, M. and Cerisola, G., Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 2009, vol. 109, p. 6541.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang, Y., Zhao, H., Liang, J., Yue, L., Li, T., Luo, Y., Liu, Q., Lu, S., Asiri, A.M., Gong, Z., and Sun, X., Anodic oxidation for the degradation of organic pollutants: Anode materials, operating conditions and mechanisms. A mini review, Electrochem. Commun., 2021, vol. 123, p. 1.

    Article  Google Scholar 

  22. Salazar-Banda, G.R., Santos, G.d.O.S., Duarte Gonzaga, I.M., Doria, A.R., and Barrios Eguiluz, K.I., Developments in electrode materials for wastewater treatment, Curr. Opin. Electrochem., 2021, vol. 26, p. 1.

    Google Scholar 

  23. Hu, Z., Cai, J., Song, G., Tian, Y., and Zhou, M., Anodic oxidation of organic pollutants: anode fabrication, process hybrid and environmental applications, Curr. Opin. Electrochem., 2021, vol. 26, p. 1.

    Google Scholar 

  24. Zwane, B.N., Orimolade, B.O., Koiki, B.A., Mabuba, N., Gomri, C., Petit, E., Bonniol, V., Lesage, G., Rivallin, M., Cretin, M., and Arotiba, O.A., Combined electro-fenton and anodic oxidation processes at a sub-stoichiometric titanium oxide (Ti4O7) ceramic electrode for the degradation of tetracycline in water, Water, 2021, vol. 13, p. 1.

    Article  Google Scholar 

  25. Hoffman, Z.B., Gray, T.S., Moraveck, K.B., Gunnoe, T.B., and Zangari, G., Electrochemical reduction of carbon dioxide to syngas and formate at dendritic copper–indium electrocatalysts, ACS Catal., 2017, vol. 7, p. 5381.

    Article  CAS  Google Scholar 

  26. Zhang, X. and Chen, Y., A light-modulated chemosensor for methanol with ratiometry and colorimetry, Anal. Chim. Acta, 2009, vol. 650, p. 254.

    Article  CAS  PubMed  Google Scholar 

  27. Wrobel, K., Rodríguez, D.M., Aguilar, F.J.A., and Wrobel, K., Determination of methanol in O,O-dimethyldithiophosphoric acid (DMDTPA) of technical grade by UV/Vis spectrophotometry and by HPLC, Talanta, 2005, vol. 66, p. 125.

    Article  CAS  PubMed  Google Scholar 

  28. Hoyos-Arbeláez, J., Vazquez, M., and Contreras-Calderon, J., Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: a review, Food Chem., 2017, vol. 221, p. 1371.

    Article  PubMed  Google Scholar 

  29. Rahman, M.M., Ahmed, J., Asiri, A.M., Alfaifi, S.Y.M., and Marwani, H.M., Development of methanol sensor based on sol-gel drop-coating Co3O4·CdO·ZnO nanoparticles modified gold-coated μ-chip by electro-oxidation process, Gels, 2021, vol. 7, p. 1.

    Article  Google Scholar 

  30. Song, Y., Chen, W., Wei, W., and Sun, Y., Advances in clean fuel ethanol production from electro-, photo- and photoelectro-catalytic CO2 reduction, Catalysts, 2020, vol. 10, p. 1.

    Article  Google Scholar 

  31. Zheng, M., Qiu, D., Zhao, B., Ma, L., Wang, X., Lin, Z., Pan, L., Zheng, Y., and Shi, Y., Mesoporous iron oxide directly anchored on a graphene matrix for lithium-ion battery anodes with enhanced strain accommodation, RSC Adv., 2013, vol. 3, p. 699.

    Article  CAS  Google Scholar 

  32. Huang, Y.H., Zhang, T.C., Shea, P.J., and Comfort, S.D., Effects of oxide coating and selected cations on nitrate reduction by iron metal, J. Environ. Qual., 2003, vol. 32, p. 1306.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, S.Y., Xie, J., Pan, Q., Wu, C.Y., Cao, G.S., Zhu, T.J., and Zhao, X.B., Graphene anchored with nanocrystal Fe2O3 with improved electrochemical Li-storage properties, Int. J. Electrochem. Sci., 2002, vol. 7, p. 354.

    Article  Google Scholar 

  34. Gan, Z.H., Yu, G.Q., Tay, B.K., Tan, C.M., Zhao, Z.W., and Fu, Y.Q., Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc, J. Phys. D: Appl. Phys., 2004, vol. 37, p. 81.

    Article  CAS  Google Scholar 

  35. Tamm, A., Tarre, A., Verchenko, V., Seemen, H., and Stern, R., Atomic layer deposition of superconducting CuO thin films on three-dimensional substrates, Crystals, 2020, vol. 10, p. 1.

    Article  Google Scholar 

  36. Prasertying, P., Yamkesorn, M., Chimsaard, K., Thepsuparungsikul, N., Chaneam, S., Kalcher, K., and Chaisuksant, R., Modified pencil graphite electrode as a low-cost glucose sensor, J. Sci. Adv. Mater. Devices, 2020, vol. 5, p. 330.

    Article  Google Scholar 

  37. Prasad, B.B. and Pandey, I., Metal incorporated molecularly imprinted polymer-based electrochemical sensor for enantio-selective analysis of pyroglutamic acid isomers, Sens. Actuators B: Chem., 2013, vol. 186, p. 407.

    Article  CAS  Google Scholar 

  38. Prasad, B.B. and Pandey, I., Electrochemically imprinted molecular recognition sites on multiwalled carbon-nanotubes/pencil graphite electrode surface for enantioselective detection of d-and l-aspartic acid, Electrochim. Acta, 2013, vol. 88, p. 24.

    Article  CAS  Google Scholar 

  39. Pei, Y., Zhong, H., and Jin, F., A brief review of electrocatalytic reduction of CO2-materials, reaction conditions and devices, Energy Sci. Eng., 2021, vol. 9, p. 1012.

    Article  CAS  Google Scholar 

  40. Zhu, M., Zhang, L., Liu, S., Wang, D., Qin, Y., Chen, Y., Dai, W., Wang, Y., Xing, Q., and Zou, J., Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode, Chin. Chem. Lett., 2020, vol. 31, p. 1961.

    Article  CAS  Google Scholar 

  41. Kommula, B., Pandey, I., Singh, V.N., Chintala, K., and John, N.S., Enhanced electrocatalytic activity of reduced graphene oxide-Os nanoparticle hybrid films obtained at a liquid/liquid interface, J. Nanopart. Res., 2018, vol. 20, p. 1.

    Google Scholar 

  42. Kommula, B., Pandey, I., Singh, V.N., Kambhala, N., Angappane, S., and Neena, S., Films and dispersions of reduced graphene oxide based Fe2O3 nanostructure composites: synthesis, magnetic properties and electrochemical capacitance, Mater. Chem. Phys., 2018, vol. 209, p. 1.

    Article  Google Scholar 

  43. Hatel, R., EIMajdoub, S., Bakour, A., Khenfouch, M., and Baitoul, M., Graphene oxide/Fe3O4 nanorods composite: structural and Raman investigation, J. Phys.: Conf. Ser., 2018, vol. 1081, p. 1.

    Google Scholar 

  44. Pandey, I. and Kant, R., Electrochemical impedance based chiral analysis of anti-ascorbutic drug: L-ascorbic acid and d-ascorbic acid using C-dots decorated conductive polymer nanocomposite electrode, Biosens. Bioelectron., 2016, vol. 77, p. 715.

    Article  CAS  PubMed  Google Scholar 

  45. He, H. and Gao, C., Supraparamagnetic, conductive and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles, ACS Appl. Mater. Interfaces, 2010, vol. 2, p. 3201.

    Article  CAS  PubMed  Google Scholar 

  46. Sennappan, M., Murali Krishna, P., and Hari Krishna, R., Facile synthesis, characterization, nucleic acid interaction and photoluminescent properties of (E)-furan-2-yl(2-(2-hydroxybenzylidene)hydrazinyl) methaniminium and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes, J. Mol. Struct., 2019, vol. 1178, p. 333.

    Article  CAS  Google Scholar 

  47. Zou, J.-P., Chen, Y., Liu, S.-S., Xing, Q.-J., Dong, W.-H., Luo, X.-B., Dai, W.-L., Xiao, X., Luo, J.-M., and Crittenden, J., Electrochemical oxidation and advanced oxidation processes using a 3D hexagonal Co3O4 array anode for 4-nitrophenol decomposition coupled with simultaneous CO2 conversion to liquid fuels via a flower-like CuO cathode, Water Res., 2019, vol. 150, p. 330.

    Article  CAS  PubMed  Google Scholar 

  48. Li, F., Zhao, J., and Chen, Z., Fe-anchored graphene oxide: a low-cost and easily accessible catalyst for low-temperature CO oxidation, J. Phys. Chem. C, 2012, vol. 116, p. 2507.

    Article  CAS  Google Scholar 

  49. Wang, J. and Liu, C.J., Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: current status and perspective, Nano Energy, 2015, vol. 11, p. 277.

    Article  CAS  Google Scholar 

  50. Usman, M., Humayun, M., Garba, M.D., Ullah, L., Zeb, Z., Helal, A., Suliman, M.H., Alfaifi, B.Y., Iqbal, N., Abdinejad, M., Tahir, A.A., and Ullah, H., Electrochemical reduction of CO2: a review of cobalt based catalysts for carbon dioxide conversion to fuels, Nanomaterials, 2021, vol. 11, p. 1.

    Article  Google Scholar 

  51. Li, D., Batchelor-McAuley, C., and Compton, R.G., Some thoughts about reporting the electrocatalytic performance of nanomaterials, Appl. Mater. Today, 2020, vol. 18, p. 100404.

    Article  Google Scholar 

  52. McAuley, C., Defining the onset potential, Curr. Opin. Electrochem., 2023, vol. 37, p. 101176.

    Article  Google Scholar 

  53. Liu, S.-S., Xing, Q.-J., Chen, Y., Zhu, M., Jiang, X.-H., Wu, S.-H., Dai, W., and Zou, J.-P., Photoelectrochemical degradation of organic pollutants using BiOBr anode coupled with simultaneous CO2 reduction to liquid fuels via CuO cathode, ACS Sustainable Chem. Eng., 2019, vol. 7, p. 1250 .

    Article  CAS  Google Scholar 

  54. Pandey, I., Tiwari, J.D., and Sekhar, P., Metal incorporated polymeric nanodots based electrode material for fluorescent supercapacitors, J. Electrochem. Soc., 2018, vol. 165, p. B3035.

    Article  CAS  Google Scholar 

  55. Serrà, A., Artal, L., Raül, P., Maria, G.-A., and Jaume, G.E., Simple environmentally-friendly reduction of 4-nitrophenol, Catalysts, 2020, vol. 10, p. 458.

    Article  Google Scholar 

  56. Karuppasamy, P., Thiruppathi, D., Ganesan, M., et al., Electrocatalytic oxidation of L-cysteine, L-methionine, and methionine-glycine using [oxoiron(IV)-salen] ion immobilized glassy carbon electrode, Electrocatalysis, 2021, vol. 12, p. 516.

    Article  CAS  Google Scholar 

  57. Zhang, G., Wang, T., Zhang, M., Li, L., Cheng, D., Zhen, S., Wang, Y., Qin, J., Zhao, Z.J., and Gong, J., Selective CO2 electro reduction to methanol via enhanced oxygen bonding, Nat. Commun., 2022, vol. 13, no. 1, p. 7768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Caamano, T.M., Mohamed, S.E.H., Mario, G.S., Martin, C., Arnaud, W., Baranova, E.A., and Yaser, A.-L., Tuning the polarity of dinitrile-based electrolyte solutions for CO2 electro reduction on copper catalysts, J. Phys. Chem. C, 2023, vol. 127, no. 15, p. 7230.

    Article  Google Scholar 

  59. Jin, C., Qing, Z., Wei-You, H., Chungseok, C., Yang, L., John Mark, P.M., Chih, C., Jin, H., Emily, A.C., and Yu, H., Highly selective electrochemical reduction of CO2 into methane on nano twinned Cu, J. Am. Chem. Soc., 2023, vol. 145, no. 16, pp. 9136–9143. https://doi.org/10.1021/jacs.3c00847

    Article  CAS  Google Scholar 

  60. Hosseini, M.G., Momeni, M.M., and Faraji, M., Highly active nickel nanoparticles supported on TiO2 nanotube electrodes for methanol electrooxidation, Electroanalysis, 2010, vol. 22, p. 2620.

    Article  CAS  Google Scholar 

  61. Pengcheng, M. and Xiaoyan, M., High-sensitivity and temperature-controlled switching methanol sensor prepared based on the dual catalysis of copper particles, Talanta, 2022, vol. 237, p. 122888.

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

This work was designed and presented by all authors. They have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Indu Pandey or Periyakaruppan Karuppasamy.

Ethics declarations

The authors declare that they have no conflicts of interest.

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indu Pandey, Tiwari, J.D., Shukla, A. et al. Novel Electrochemical Coupled Three-in-One Sensing System for Transforming Organic Pollutants into Green Fuels and Their Sensing. Russ J Electrochem 59, 1162–1175 (2023). https://doi.org/10.1134/S1023193523220044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523220044

Keywords:

Navigation