Skip to main content
Log in

Electrochemical Phosphorylation of Terminal Acetylenes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Electrocatalytic phosphorylation of terminal acetylenes with diarylphosphine oxides in the presence of a bpyCo(BF4)2 catalyst was first implemented under electrochemical reducing conditions with yields up to 75%. The nature of the solvent and the supporting electrolyte, the presence of oxygen and water determine the formation of certain products of the acetylenes’ phosphorylation. The varying of the above factors was carried out in order to select optimal conditions for electrosynthesis to achieve stereo- and chemo-selectivity. Voltammetric studies were used to establish redox properties of participants, to optimize processes involving the cobalt catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Zhao, Y.-L., Wu, G.-J., Li, Y., Gao, L.-X., and Han, F.-S., [NiCl2(dppp)]-Catalyzed Cross-Coupling of Aryl Halides with Dialkyl Phosphite, Diphenylphosphine Oxide, and Diphenylphosphine, Chemistry—A Europ. J., 2012, vol. 18, no. 31, p. 9622.

    Article  CAS  Google Scholar 

  2. Hamel, M., Lecinq, M., Gulea, M., and Kozelka, J., Ortho-(methylsulfanyl)phenylphosphonates and derivatives: Synthesis and applications as mono- or bidentate ligands for the preparation of platinum complexes, J. Organometallic Chem., 2013, vols. 745–746, p. 206.

  3. Snee, P.T., Somers, R.C., Nair, G., Zimmer, J.P., Bawendi, M.G., and Nocera, D.G., A Ratiometric CdSe/ZnS Nanocrystal pH Sensor, J. Amer. Chem. Soc., 2006, vol. 128, no.41, p. 13320.

    Article  CAS  Google Scholar 

  4. Paine, R.T., Bond, E.M., Parveen, S., Donhart, N., Duesler, E.N., Smith, K.A., and Nöth, H., Synthesis and Coordination Properties of 1-(Diphenylphosphine oxide)-1-(2'-pyridylN-oxide)-3-(diphenylphosphine oxide)propane, Inorganic Chem., 2002, vol. 41, no. 2, p. 444.

    Article  CAS  Google Scholar 

  5. Alguacil, F.J. and Alonso, M., Transport of cadmium from a mixture of HCl and H3PO4 using phosphine oxides (Cyanex 921 and Cyanex 923) as carriers: the influence of the membrane diluents (Exxsol D100 and Solvesso 100), Hydrometallurgy, 2002, vol. 74, no. 3–4, p. 195.

  6. Khrizanforova, V., Khrizanforov, M., Gryaznova, T., and Budnikova, Y., Electrochemical Approaches to Phenylphosphine Oxide Derivatives Synthesis, ECS Transactions, 2016, vol. 72, no. 29, p. 35.

    Article  CAS  Google Scholar 

  7. Dvorko, M.Y., Glotova, T.E., Ushakov, I.A., and Gusarova, N.K., Reaction of secondary phosphine oxides with acylacetylenes, Russ. J. Organic Chem., 2010, vol. 46, no. 4, p. 485.

    Article  CAS  Google Scholar 

  8. Wang, Y., Li, Z., Wang, J., Li, J., and Lin, Y., Graphene and graphene oxide: biofunctionalization and applications in biotechnology, Trends Biotechnol., 2011, vol. 29, no.5, p. 205.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Subhan, M. A., Hasegawa, Y., Suzuki, T., Kaizaki, S., and Shozo, Y., Remarkable chiral and luminescent properties of novel Yb(III) and Eu(III) complexes containing BINAPO ligand, Inorganica Chim. Acta, 2009, vol. 362, no. 1, p. 136.

    Article  CAS  Google Scholar 

  10. Hayashi, Y., Matano, Y., Suda, K., Kimura, Y., Nakao, Y., and Imahori, H., Synthesis and Structure-Property Relationships of 2,2-Bis(benzo[b]phosphole) and 2,2-Benzo[b]phosphole-Benzo[b]heterole Hybrid π-Systems, Chemistry—A Europ. J., 2012, vol. 18, no. 50, p. 15972.

    Article  CAS  Google Scholar 

  11. Shen, Y., Zheng, J., Xin, Y., Lin, Y., and Qi, M., Synthesis of perfluoroalkylated heterocyclic phosphonates, J. Chem. Soc., Perkin Transactions 1, 1995, no. 8, p. 997.

  12. Ruder, S.M. and Norwood, B.K., Cycloaddition of Enamines with Alkynylphosphonates. A Route to Functionalized Medium Sized Rings, Tetrahedron Lett., 1994, vol. 35, p. 3473.

    Article  CAS  Google Scholar 

  13. Lecerclé, D., Sawicki, M., and Taran, F., Phosphine-Catalyzed α-P-Addition on Activated Alkynes: A New Route to P−C−P Backbones, Organic Letters, 2006, vol. 8, no. 19, p. 4283.

    Article  PubMed  Google Scholar 

  14. Syam Prasad, G., Manjunath, M., Kishore Kumar Reddy, K.R., Sarathi Reddy, O.V., and Suresh Reddy, C., Synthesis and antibacterial activity of new aryl/alkyl phosphonates via Michaelis-Arbuzov rearrangement, ARKIVOC, 2006, vol. 16, p. 128.

    Google Scholar 

  15. Meziane, D., Hardouin, J., Elias, A., Guenin, E., and Lecouvey, M., Microwave Michaelis-Becker synthesis of diethyl phosphonates, tetraethyl diphosphonates, and their total or partial dealkylation, Heteroatom Chem., 2009, vol. 20, no. 6, p. 369.

    Article  CAS  Google Scholar 

  16. Vu, A.P., Shaffer, E.A., Byington Congiardo, L.K., and Knight, D.A., The Michaelis–Becker Reaction in Phosphonium and Imidazolium Ionic Liquids, Phosphorus, Sulfur, Silicon, Related Elements, 2010, vol. 185, no. 9, p. 1845.

    Article  CAS  Google Scholar 

  17. Gao, Y., Wang, G., Chen, L., Xu, P., Zhao, Y., Zhou, Y., and Han, L.-B., Copper-Catalyzed Aerobic Oxidative Coupling of Terminal Alkynes with H-Phosphonates Leading to Alkynylphosphonates, J. Amer. Chem. Soc., 2009, vol.131, no. 23, p. 7956.

    Article  CAS  Google Scholar 

  18. Gulykina, N.S., Dolgina, T.M., Bondarenko, G.N., and Beletskaya, I.P., Hydrophosphorylation of Terminal Alkynes Catalyzed by Palladium, Russ. J. Organic Chem., 2003, vol. 39, no. 6, p. 797.

    Article  CAS  Google Scholar 

  19. Zhang, H., Zhang, X.-Y., Dong, D.-Q., and Wang, Z.-L., Copper-catalyzed cross-coupling reactions for C–P bond formation, RSC Advances, 2015, vol. 5, no. 65, p. 52824.

    Article  CAS  Google Scholar 

  20. Didehban, K., Vessally, E., Hosseinian, A., Edjlali, L., and Khosroshahi, E. S., Nanocatalysts for C–Se cross-coupling reactions, RSC Advances, 2018, vol. 8, no. 1, p. 291.

    Article  CAS  Google Scholar 

  21. Nejati, K., Ahmadi, S., Nikpassand, M., Kheirollahi Nezhad, P. D., and Vessally, E., Diaryl ethers synthesis: nano-catalysts in carbon-oxygen cross-coupling reactions, RSC Advances, 2018, vol. 8, no. 34, p. 19125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hosseinian, A., Mohammadi, R., Ahmadi, S., Monfared, A., and Rahmani, Z., Arylhydrazines: novel and versatile electrophilic partners in cross-coupling reactions, RSC Advances, 2018, vol. 8, no. 59, p. 33828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, J.-Q., Chen, T., Zhang, J.-S., and Han, L.-B., Silver-Free Direct Synthesis of Alkynylphosphine Oxides via spC–H/P(O)–H Dehydrogenative Coupling Catalyzed by Palladium, Organic Letters, 2017, vol. 19, no. 17, p. 4692.

    Article  CAS  PubMed  Google Scholar 

  24. Orita, A., Otera, J., Yang, X., Matsuo, D., Suzuma, Y., Fang, J.-K., and Hara, K., Ph2P(O) Group for Protection of Terminal Acetylenes, Synlett, 2011, no. 16, p. 2402.

  25. Yang, J., Chen, T., Zhou, Y., Yin, S.-F., and Han, L.-B., Mechanistic Studies on the Palladium-Catalyzed Cross Dehydrogenative Coupling of P(O)–H Compounds with Terminal Alkynes: Stereochemistry and Reactive Intermediates, Organometallics, 2015, vol. 34, no. 20, p. 5095.

    Article  CAS  Google Scholar 

  26. Liu, L., Wu, Y., Wang, Z., Zhu, J., and Zhao, Y., Mechanistic Insight into the Copper-Catalyzed Phosphorylation of Terminal Alkynes: A Combined Theoretical and Experimental Study, J. Organic Chem., 2014, vol. 79, no. 15, p. 6816.

    Article  CAS  Google Scholar 

  27. Chen, X., Li, X., Chen, X.-L., Qu, L.-B., Chen, J.-Y., Sun, K., and Zhao, Y.-F., A one-pot strategy to synthesize β-ketophosphonates: silver/copper catalyzed direct oxyphosphorylation of alkynes with H-phosphonates and oxygen in the air, Chem. Commun., 2015, vol. 51, no. 18, p. 3846.

    Article  CAS  Google Scholar 

  28. Zhang, J.-S., Zhang, J.-Q., Chen, T., and Han, L.-B., t-BuOK-mediated reductive addition of P(O)–H compounds to terminal alkynes forming β-arylphosphine oxides, Organic Biomolec. Chem., 2017, vol. 15, no. 26, p. 5462.

    Article  CAS  Google Scholar 

  29. Budnikova, Yu.G., Kafiyatullina, A.G., Kargin, Yu.M., and Sinyashin, O.G. Metal-complex catalysis in organic electrosynthesis. Electrocatalytic reduction of organic halides under the action of cobalt complex with 2,2'-bipyridil (in Russian), Zh. Org. Khim., 2000, vol. 70, no. 9, p. 1538.

    Google Scholar 

  30. Budnikova, Yu.G., Kafiyatullina, A.G., Kargin, Yu.M., and Sinyashin, O.G. Kinetic regularities of electrochemical reduction of organic halides under the action of cobalt complex with 2,2'-bipyridil (in Russian), Zh. Org. Khim., 2001, vol. 71, no. 2, p. 258.

    Google Scholar 

  31. Budnikova, Yu.G., Kafiyatullina, A.G., Kargin, Yu.M., and Sinyashin, O.G. Electrocatalytic reduction of organic halides under the action of cobalt complex with 2,2'-bipyridil (in Russian), Izv. Akad. nauk, 2002, vol. 51, no. 9, p. 1562.

  32. Budnikova, Yu.G., Kafiyatullina, A.G., Kargin, Yu.M., and Sinyashin, O.G. Electrochemical reduction of cobalt and nickel complexes with ligands stabilizing metals in their low oxidation degrees (in Russian), Izv. Akad. nauk, 2003, vol. 52, no. 7, p. 1423.

  33. Zhang, J.-Q., Chen, T., Zhang, J.-S., and Han, L.-B., Silver-Free Direct Synthesis of Alkynylphosphine Oxides via spC–H/P(O)–H Dehydrogenative Coupling Catalyzed by Palladium, Organic Lett., 2017, vol. 19, no. 17, p. 4692.

    Article  CAS  Google Scholar 

  34. Zhang, P., Zhang, L., Gao, Y., Xu, J., Fang, H., Tang, G., and Zhao, Y., Copper-catalyzed tandem phosphination–decarboxylation–oxidation of alkynyl acids with H-phosphine oxides: a facile synthesis of β-ketophosphine oxides, Chem. Commun., 2015, vol. 51, no. 37, p.7839.

    Article  CAS  Google Scholar 

  35. Gulyukina, N.S., Dolgina, T.M., Bondarenko, G.N., Beletskaya, I.P., Bondarenko, N.A., Anri, Zh.-K., Lavern’, D., Ratovelomanana-Vidal’, V., and Zhene, Zh.-P, Hydrophosphorylation of Terminal Alkynes Catalyzed by Palladium, Zh. Org. Khim. 2003, vol. 38, p. 600.

    Google Scholar 

  36. Yang, J., Chen T, Zhou Y, Yin S, and Han L-B., Palladium-Catalyzed Dehydrogenative Coupling of Terminal Alkynes with Secondary Phosphine Oxides, Chem. Commun., 2015, vol. 51, p. 3549.

    Article  CAS  Google Scholar 

  37. Hu, G., Zhang, Y., Su, J., Li, Z., Gao, Y., and Zhao, Y., Ag-mediated cascade decarboxylative coupling and annulation: a convenient route to 2-phosphinobenzo[b]phosphole oxides, Organic Biomolec. Chem., 2015, vol. 13, no. 30, p. 8221.

    Article  CAS  Google Scholar 

  38. Zhang, J.-S., Zhang, J.-Q., Chen, T., and Han, L.-B., t-BuOK-mediated reductive addition of P(O)–H compounds to terminal alkynes forming β-arylphosphine oxides, Organic Biomolec. Chem., 2017, vol. 15, no. 26, p. 5462.

    Article  CAS  Google Scholar 

  39. Kirk – Othmer encyclopedia, 3rd Ed., vol. 1, New York, 1978, p. 192-193.

  40. Zeng, Y.-F., Tan, D.-H., Lv, W.-X., Li, Q., and Wang, H., Silver-Catalyzed Aerobic Oxidative Decarboxylative Coupling of Arylpropiolic Acids with H-Phosphine Oxides: Mild and Facile Synthesis of β-Oxophosphine Oxides, Europ. J. Organic Chem., 2015, vol. 20, p. 4335.

    Article  Google Scholar 

  41. Budnikova, Y.H., Dolengovsky, E.L., Tarasov, M.V., and Gryaznova, T.V., Recent advances in electrochemical C–H phosphorylation, Front. Chem., 2022, vol. 10, p.1054116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gryaznova, T.V., Nikanshina, E.O., Fayzullin, R.R., Islfmov, D.R., Tarasov, M.V., Kholin, K.V., and Budnikova, Y.H., EPR-electrochemical monitoring of P–C coupling: Towards one-step electrochemical phosphorylation of acridine, Electrochim. Acta, 2022, vol. 428, p.140946.

    Article  CAS  Google Scholar 

  43. Yurko, E.O., Gryaznova, T.V., Kholin, K.V., Khrizanforova, V.V., and Budnikova, Y.H., External oxidant-free cross-coupling: Electrochemically induced aromatic C–H phosphonation of azoles with dialkyl-: H-phosphonates under silver catalysis, Dalton Transactions, 2018, vol. 47, no. 1, p. 190.

    Article  CAS  Google Scholar 

  44. Khrizanforova, V.V., Kholin, K.V., Khrizanforov, M.N., Kadirov, M.K., and Budnikova, Y.H., Electrooxidative CH/PH functionalization as a novel way to synthesize benzo[: B] phosphole oxides mediated by catalytic amounts of silver acetate, New J. Chem., 2018, vol. 42, no. 2, p. 930.

    Article  CAS  Google Scholar 

  45. Hongjie, R., Ling-Guo, Me., Hailong, Xu, Yuqing, L., and Lei, W., Additive-free coupling of bromoalkynes with secondary phosphine oxides to generate alkynylphosphine oxides in acetic anhydride, Organic and Biomolec. Chem., 2020, vol. 18, no. 6, p. 1087.

    Article  Google Scholar 

  46. Jia, Y., Tieqiao, C., Yongbo, Z., Shuangfeng, Y., and Li-Biao, H., Palladium-catalyzed dehydrogenative coupling of terminal alkynes with secondary phosphine oxides, Chem. Commun., 2015, vol. 51, no.17, p. 3549.

    Article  Google Scholar 

  47. Guo, H., Yoshimura, A., Chen, T., Saga, Y., and Han, L.-B., Air-induced double addition of P(O)–H bonds to alkynes: a clean and practical method for the preparation of 1,2-bisphosphorylethanes, Green Chem., 2017, vol. 19(6), p. 1502.

    Article  CAS  Google Scholar 

  48. Khachatryan, R.A., Sayadyan, S.V., Grigoryan, N.Yu., and Indzhikyan, M.G., Synthesis of tertiary phosphines and phosphine oxides by nucleophilic addition reactions using interfacial catalysts or superbasic media, J. general chem. USSR, 1988, vol. 58, no. 11, p. 2197.

  49. Juhász, K., Varga, B., Bagi, P., and Hell, Z., Heterogeneous Catalytic Method for the Copper(II)-Catalysed Addition of H-Phosphinates and Secondary Phosphine Oxides to Phenylacetylene, Catal. Lett., 2022, vol. 152, p. 1100.

    Article  Google Scholar 

  50. Liu, B., Song, Q., Liu, Z., and Wang, Z., Silver-Catalyzed Oxyphosphorylation of Unactivated Alkynes, Adv. Synth.Catal., 2021, vol. 363, p. 3214.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to the Common Use Center of Federal Research Center Kazan Scientific Center, Russian Academy of Sciences, for the carried out studies.

Funding

This work was supported by the Russian Science Foundation, grant no. 22-13-00017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tarasov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Delivered at the 20th All-Russian Meeting “Electrochemistry of Organic Compounds” (EKhOS-2022), Novocherkassk, October 18–22, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, M.V., Khrizanforova, V.V., Gryaznova, T.V. et al. Electrochemical Phosphorylation of Terminal Acetylenes. Russ J Electrochem 59, 896–905 (2023). https://doi.org/10.1134/S1023193523110137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523110137

Keywords

Navigation