Skip to main content
Log in

Digital Circuit for Fast Scan Voltammetry Based on Dual-Frequency Method

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, a digital circuit for fast scan voltammetry (FSV) was developed based on dual-frequency method. It consists of six main modules including the microcontroller unit, signal generator module, solution resistance measurement module, ohmic drop automatic compensation module, keying module and display module. By online measuring the solution resistance without any interference from capacitive impedance first, the ohmic drop compensation could be precisely carried out, bringing reliable FSV detection. RC dummy cell, dummy cell with pseudo-Faradaic impedance and actual electrochemical cell were used to verify the performance of automatic ohmic drop compensation. Results show that, FSV could be performed using a conventional electrode with the scan rate up to 2400 V/s. And, a handheld device was manufactured with a weight of 100 g and a size of 9 × 6 × 3 cm, costing only $35. It provides a simple, reliable and stable FSV plateau for electrochemical detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Amatore, C., Maisonhaute, E., Nierengarten, J.F., and Schollhorn, B., Direct monitoring of ultrafast redox commutation at the nanosecond and nanometer scales by ultrafast voltammetry: from molecular wires to cation releasing systems, Isr. J. Chem., 2008, vol. 48, no. 3, p. 203.

    Article  CAS  Google Scholar 

  2. Amatore, C., Bouret, Y., Maisonhaute, E., Abruna, H.D., and Goldsmith, J.I., Electrochemistry within molecules using ultrafast cyclic voltammetry, C.R. Chim., 2003, vol. 6, no. 1, p. 99.

    Article  CAS  Google Scholar 

  3. Lee, J.H.Q., Lauw, S.J.L., and Webster, R.D., The electrochemical study of vanillin in acetonitrile, Electrochim. Acta, 2016, vol. 211, p. 533.

    Article  CAS  Google Scholar 

  4. Meunier, C.J., McCarty, G.S., and Sombers, L.A., Drift subtraction for fast-scan cyclic voltammetry using double-waveform partial-least-squares regression, Anal. Chem., 2019, vol. 91, no. 11, p. 7319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cryan, M.T. and Ross, A.E., Subsecond detection of guanosine using fast-scan cyclic voltammetry, Analyst, 2018, vol. 144, no. 1, p. 249.

    Article  PubMed  Google Scholar 

  6. Choi, H., Shin, H., Cho, H.U., Blaha, C.D., Heien, M.L., Oh, Y., Lee, K.H., and Jang, D.P., Neurochemical concentration prediction using deep learning vs principal component regression in fast scan cyclic voltammetry: a comparison study, ACS Chem. Neurosci., 2022, vol. 13, no. 15, p. 2288.

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen, M.D. and Venton, B.J., Fast-scan cyclic voltammetry for the characterization of rapid adenosine release, Comput. Struct. Biotechnol. J., 2015, vol. 13, p. 47.

    Article  CAS  PubMed  Google Scholar 

  8. Alpuche-Aviles, M.A., Baur, J.E., and Wipf, D.O., Imaging of metal ion dissolution and electrodeposition by anodic stripping voltammetry-scanning electrochemical microscopy, Anal. Chem., 2008, vol. 80, no. 10, p. 3612.

    Article  CAS  PubMed  Google Scholar 

  9. Chang, J. and Bard, A.J., Detection of the Sn(III) intermediate and the mechanism of the Sn(IV)/Sn(II) electroreduction reaction in bromide media by cyclic voltammetry and scanning electrochemical microscopy, J. Am. Chem. Soc., 2014, vol. 136, no. 1, p. 311.

    Article  CAS  PubMed  Google Scholar 

  10. Johnson, J.A., Hobbs, C.N., and Wightman, R.M., Removal of differential capacitive interferences in fast-scan cyclic voltammetry, Anal. Chem., 2017, vol. 89, no. 11, p. 6166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wipf, D.O., Kristensen, E.W., Deakin, M.R., and Wightman, R.M., Fast-scan cyclic voltammetry as a method to measure rapid, heterogeneous electron-transfer kinetics, Anal. Chem., 1988, vol. 60, no. 4, p. 306.

    Article  CAS  Google Scholar 

  12. Lissaneddine, A., Pons, M.N., Aziz, F., Ouazzani, N., Mandi, L., and Mousset, E., Electrosorption of phenolic compounds from olive mill wastewater: mass transport consideration under a transient regime through an alginate-activated carbon fixed-bed electrode, J. Hazard. Mater., 2022, vol. 430, p. 128480.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, G., Xie, J., Zhang, Z., Meng, W., Zhang, C., Kang, K., Wu, Y., and Guo, Z., A portable digital-control electrochemical system with automatic ohmic drop compensation for fast scan voltammetry and its application to ultrasensitive detection of chromium(III), Sens. Actuators B: Chem., 2019, vol. 301, p. 127135.

    Article  CAS  Google Scholar 

  14. Xiao, F., Zhou, H., Lin, H., Li, H., Zou, T., Wu, Y., and Guo, Z., A fast scan cyclic voltammetric digital circuit with precise ohmic drop compensation by online measuring solution resistance and its biosensing application, Anal. Chim. Acta, 2021, vol. 1175, p. 338744.

    Article  CAS  PubMed  Google Scholar 

  15. Ngamaroonchote, A., Liangruksa, M., Hanlumyuang, Y., Wijitwiengrat, T., and Laocharoensuk, R., A gold coated polystyrene ring microarray formed by two-step patterning: construction of an advanced microelectrode for voltammetric sensing, Mikrochim. Acta, 2019, vol. 186, no. 6, p. 349.

    Article  PubMed  Google Scholar 

  16. Cooper, J.B. and Bond, A.M., Microelectrode studies in the absence of deliberately added supporting electrolyte: solvent dependence for a neutral and singly charged species, J. Electroanal. Chem., 1991, vol. 315, no. 1, p. 143.

    Article  CAS  Google Scholar 

  17. Arjmand, F. and Zhang, L., Solution resistivity, ohmic drop and oxygen reduction rate at high temperature pressurized water, Electrochim. Acta, 2016, vol. 216, p. 438.

    Article  CAS  Google Scholar 

  18. Amatore, C. and Lefrou, C., Is cyclic voltammetry above a few hundred kilovolts per second still cyclic voltammetry?, J. Electroanal. Chem., 1990, vol. 296, no. 2, p. 335.

    Article  CAS  Google Scholar 

  19. Cao, Y., Brady, G.J., Gui, H., Rutherglen, C., Arnold, M.S., and Zhou, C., Radio frequency transistors using aligned semiconducting carbon nanotubes with current-gain cutoff frequency and maximum oscillation frequency simultaneously greater than 70 GHz, ACS Nano, 2016, vol. 10, no. 7, p. 6782.

    Article  CAS  PubMed  Google Scholar 

  20. Wipf, D.O., Ohmic drop compensation in voltammetry: iterative correction of the applied potential, Anal. Chem., 1996, vol. 68, no. 11, p. 1871.

    Article  CAS  PubMed  Google Scholar 

  21. Kumar, M. and Kant, R., Theory for influence of ohmic resistance and electrode roughness on admittance voltammetry of reversible E and EE reactions, J. Electroanal. Chem., 2021, vol. 898, p. 115601.

    Article  CAS  Google Scholar 

  22. Tauzin, A., Dionne, E.R., and Badia, A., The aggregation and micellization of ionic surfactants in aqueous solution detected using surface-confined redox and ion-pairing reactions, Electrochim. Acta, 2019, vol. 326, p. 134991.

    Article  CAS  Google Scholar 

  23. Brown, E.R., Smith, D.E., and Booman, G.L., A study of operational amplifier potentiostats employing positive feedback for iR compensation I. Theoretical analysis of stability and bandpass characteristics, Anal. Chem., 1968, vol. 40, no. 10, p. 1411.

    Article  CAS  Google Scholar 

  24. Gabrielli, C., Once upon a time there was EIS, Electrochim. Acta, 2020, vol. 331, p. 135324.

    Article  CAS  Google Scholar 

  25. Mamán, D., Duo, R., Aldaz, A., and Vazquez, J.L., A dynamic compensation device for ir drop in electrochemical cells-I, Electrochim. Acta, 1980, vol. 25, no. 5, p. 633.

    Article  Google Scholar 

  26. Vicente, S., Borges, E.P., Reis, B.F., and Zagatto, E.A.G., Exploitation of tandem streams for carry-over compensation in flow analysis—I. Turbidimetric determination of potassium in fertilizers, Anal. Chim. Acta, 2001, vol. 438, no. 1, p. 3.

    Article  CAS  Google Scholar 

  27. Amatore, C., Maisonhaute, E., and Simonneau, G., Ohmic drop compensation in cyclic voltammetry at scan rates in the megavolt per second range: access to nanometric diffusion layers via transient electrochemistry, J. Electroanal. Chem., 2000, vol. 486, no. 2, p. 141.

    Article  CAS  Google Scholar 

  28. Chen, Z., Lu, P., Zhu, H., Du, B., Xie, T., Wang, W., and Xu, M., AC impedance investigation and charge-discharge performance of NaOH surface-modified natural graphite, Electrochim. Acta, 2013, vol. 102, p. 44.

    Article  CAS  Google Scholar 

  29. Li, J., Bentley, C.L., Bond, A.M., and Zhang, J., Dual-frequency alternating current designer waveform for reliable voltammetric determination of electrode kinetics approaching the reversible limit, Anal. Chem., 2016, vol. 88, no. 4, p. 2367.

    Article  CAS  PubMed  Google Scholar 

  30. Lins, E., Read, S., Unni, B., Rosendahl, S.M., and Burgess, I.J., Microsecond resolved infrared spectroelectrochemistry using dual frequency comb IR lasers, Anal. Chem., 2020, vol. 92, no. 9, p. 6241.

    Article  CAS  PubMed  Google Scholar 

  31. Woodward, A.M. and Kell, D.B., Dual-frequency excitation: a novel method for probing the nonlinear dielectric properties of biological systems, and its application to suspensions of S. cerevisiae, Bioelectrochem. Bioenerg., 1991, vol. 25, no. 3, p. 395.

    Article  Google Scholar 

  32. Boitel-Aullen, G., Fillaud, L., Huet, F., Nierengarten, I., Delavaux-Nicot, B., Nierengarten, J.F., and Maisonhaute, E., Electron transfer inside a decaferrocenylated rotaxane analyzed by fast scan cyclic voltammetry and impedance spectroscopy, ChemElectroChem, 2021, vol. 8, no. 18, p. 3506.

    Article  CAS  Google Scholar 

  33. Matsubara, Y., A Small yet complete framework for a potentiostat, galvanostat, and electrochemical impedance spectrometer, J. Chem. Edu., 2021, vol. 98, no. 10, p. 3362.

    Article  CAS  Google Scholar 

  34. Caux, M., Achit, A., Var, K., Boitel-Aullen, G., Rose, D., Aubouy, A., Argentieri, S., Campagnolo, R., and Maisonhaute, E., PassStat, a simple but fast, precise and versatile open source potentiostat, HardwareX, 2022, vol. 11, p. e00290.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Anne, A., Bouchardon, A., and Moiroux, J., 3′-ferrocene-labeled oligonucleotide chains end-tethered to gold electrode surfaces: novel model systems for exploring flexibility of short DNA using cyclic voltammetry, J. Am. Chem. Soc., 2003, vol. 125, no. 5, p. 1112.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Y., He, X., Wang, K., Ni, X., Su, J., and Chen, Z., Ferrocene-functionalized SWCNT for electrochemical detection of T4 polynucleotide kinase activity, Biosens. Bioelectron., 2012, vol. 32, no. 1, p. 213.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial support from National Natural Science Foundation of China (82273681, 81773483), and Key R&D Program of Zhejiang (2022C02028) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Yiwen Zhang and Huiqian Zhou contributed equally to this work.

Corresponding author

Correspondence to Yangbo Wu.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yiwen Zhang, Zhou, H., Li, H. et al. Digital Circuit for Fast Scan Voltammetry Based on Dual-Frequency Method. Russ J Electrochem 59, 809–816 (2023). https://doi.org/10.1134/S1023193523100130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523100130

Keywords:

Navigation