Skip to main content
Log in

Study of Properties of the Cobalt–Manganese Spinel-Based Coatings Obtained by the Non-Stationary Electrolysis

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract—

Coatings based on cobalt–manganese spinel (Mn,Co)(Mn,Co)2O4 are obtained on the stainless-steel surface by polarization with asymmetric alternating current. The study of their mechanical properties showed that the coatings have sufficiently high adhesion to the substrate, their thickness is about 30 μm, and their microhardness value of 40 HV is comparable to that of similar oxide materials. The study of thermal stability in air showed them being stable at temperatures up to 1000°C; the study of corrosion-protective properties, in 3.5 wt % NaCl solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Agarkova, E.A., Agarkov, D.A., Burmistrov, I.N., et al., Three-Layered Membranes for Planar Solid Oxide Fuel Cells of the Electrolyte-Supported Design: Characteristics and Applications, Russ. J. Electrochem., 2020, vol. 56, p. 132.

    Article  CAS  Google Scholar 

  2. Tan, K.H., Rahman, H.A., and Taib, H., Coating layer and influence of transition metal for ferritic stainless steel interconnector solid oxide fuel cell: A review, Int. J. Hydrogen Energy, 2019, vol. 44, no. 58, p. 30591.

    Article  CAS  Google Scholar 

  3. Zanchi, E., Talic, B., Sabato, A.G., Molin, S., Boccaccini, A.R., and Smeacetto, F., Electrophoretic co-deposition of Fe2O3 and Mn1,5Co1,5O4: Processing and oxidation performance of Fe-doped Mn–Co coatings for solid oxide cell interconnects, J. Eur. Ceram. Soc., 2019, vol. 39, p. 3768.

    Article  CAS  Google Scholar 

  4. Demeneva, N.V. and Bredikhin, S.I., Oxide film formation and diffusion processes in near-surface layers of current collectors in solid oxide fuel cells, Russ. J. Electrochem., 2014, vol. 50, p. 725.

    Article  CAS  Google Scholar 

  5. Frangini, S., Della Seta, L., and Paoletti, C., Preparation and Electrical Properties of Sr-Doped LaFeO3 Thin-Film Conversion Coatings for Solid Oxide Cell Steel Interconnect Applications, Energies, 2022, vol. 15, p. 632.

    Article  CAS  Google Scholar 

  6. Yu, Y.T., Lu, Y., Guan, C.Z., Wang, J.Q., and Zhu, J.H., Evaluation of the reactive-sintered (Mn,Co)3O4 spinel layer for SOFC cathode-side contact application, Int. J. Hydrogen Energy, 2022, vol. 47, no. 87, p. 36964.

    Article  CAS  Google Scholar 

  7. Yiqian, J., Guozheng, H., Mengyuan, G., Wangshu, H., Jiaqi, Sh., Zhibin, Y., Xingyu, X., and Suping, P., Ce-doped (Mn,Co)3O4 coatings for solid oxide fuel cell interconnect applications, Ceram. Int., 2022, vol. 48, no. 23, p. 34931.

    Article  Google Scholar 

  8. Wei-Ja, Sh., Chien-Kuo, L., Wei-Xin, K., Yung-Neng, Ch., and Ruey-Yi, L., High temperature (800°C) oxidation of AISI 441 stainless steel with Mn–Co contact layers for SOFC stacks, Int. J. Hydrogen Energy, 2022, vol. 47, p. 6811.

    Article  Google Scholar 

  9. Puranen, J., Pihlatie, M., Lagerbom, J., Bolelli, G., Laakso, J., Hyvärinen, L., Kylmälahti, M., Himanen, O., Kiviaho, J., Lusvarghi, L., and Vuoristo, P., Post-mortem evaluation of oxidized atmospheric plasma sprayed Mn–Co–Fe oxide spinel coatings on SOFC interconnectors, Int. J. Hydrogen Energy, 2014, vol. 39, p. 17284.

    Article  CAS  Google Scholar 

  10. Dogdibegovic, E., Ibanez, S., Wallace, A., Kopechek, D., Arkenberg, G., Swartz, S., Funk, J. M., Reisert, M., Rahman, M. A., Aphale, A., Singh, P., Ding, H., Tang, W., Glazoff, M. V., Ding, D., Skafte, Th. L., and Tucker, M. C., Performance of stainless steel interconnects with (Mn,Co)3O4-Based coating for solid oxide electrolysis, Int. J. Hydrogen Energy, 2022, vol. 47, p. 24279.

    Article  CAS  Google Scholar 

  11. Tomas, M., Asokan, V., Puranen, J., Svensson, J.-E., and Froitzheim, J., Efficiencies of cobalt- and copper-based coatings applied by different deposition processes for applications in intermediate-temperature solid oxide fuel cells, Int. J. Hydrogen Energy, 2022, vol. 47, p. 32628.

    Article  CAS  Google Scholar 

  12. Reddy, M.J., Chausson, T.E., Svensson, J.E., and Froitzheim, J., 11–23% Cr steels for solid oxide fuel cell interconnect applications at 800°C – How the coating determines oxidation kinetics, Int. J. Hydrogen Energy, 2023.

  13. Zhikuan, Zh., Chibuzor, D.-U., Uday, P., Srikanth, G., Mohammed, H. A., Nilesh, D., Yosuke, F., Yohei, M., Yutaro, M., and Soumendra, B., Comparison of Cu–Mn and Mn–Co spinel coatings for solid oxide fuel cell interconnects, Int. J. Hydrogen Energy, 2022, vol. 47, p. 36953.

    Article  Google Scholar 

  14. Brylewski, T., Kucza, W., Adamczyk, A., Kruk, A., Stygar, M., Bobruk, M., and Dąbrowa, J., Microstructure and electrical properties of Mn1 + xCo2 – xO4 (0 ≤ x ≤ 1.5) spinels synthesized using EDTA-gel processes, Ceram. Int., 2014, vol. 40, p. 13873.

    Article  CAS  Google Scholar 

  15. Jia, C., Wang, Y., Molin, S., Zhang, Y., Chen, M., and Han, M., High temperature oxidation behavior of SUS430 SOFC interconnects with Mn-Co spinel coating in air, J. Alloys Compd., 2019, vol. 787, p. 1327.

    Article  CAS  Google Scholar 

  16. Li, J., Xiong, C., Li, J., Yan, D., Pu, J., Chi, B., and Jian, L., Investigation of MnCu0.5Co1.5O4 spinel coated SUS430 interconnect alloy for preventing chromium vaporization in intermediate temperature solid oxide fuel cell, Int. J. Hydrogen Energy, 2017, vol. 42, p. 16752.

    Article  CAS  Google Scholar 

  17. Aznam, I., Mah, J.C.W., Muchtar, A., Somalu, M.R., and Ghazali, M.J., Electrophoretic deposition of (Cu,Mn,Co)3O4 spinel coating on SUS430 ferritic stainless steel: Process and performance evaluation for solid oxide fuel cell interconnect applications, J. Eur. Ceram. Soc., 2020, vol. 41, p. 1360.

    Article  Google Scholar 

  18. Kireev, S.Yu., Yangurazova, A.Z., Kireeva, C.N. Effect of different non-steady-state electrolysis modes on the rate of electroplated coating formation by metals and alloys, their composition and properties (in Russian), Izv. Vuzov, Volga District, 2017, vol. 4, p. 86.

    Google Scholar 

  19. Shul’gin, L.P., Electrochemical Processes in Alternating Current (in Russian), Leningrad: Nauka, 1974.

    Google Scholar 

  20. Khramenkova, A.V., Ariskina, D.N., and Yuzhakova, K.R., Production of Hybrid Polymer-Oxide Materials Based on Molybdenum Oxide Compounds Using Transient Electrolysis Method, Solid State Phenom., 2020, vol. 299, p. 316.

    Article  Google Scholar 

  21. Mingyu, L., Jin, X., Wei, G., Zhaolin, Zh., and Zulai, L., Effect of yttrium on the oxidation resistance and area specific resistance of MnCo2O4 coating, Surf. Coat. Technol., 2022, vol. 444, p. 128655.

    Article  Google Scholar 

  22. Bespalova, J.I., Khramenkova, A.V., Abdala, R.M., and Dmitriev, V.P., Study of the phase composition and structure of composite coatings based on transition-metal oxide compounds via X-ray diffraction and X-ray absorption fine structure spectroscopy, J. Surf. Investig. X-ray, Synchrotron Neutron Techniques, 2014, vol. 8, p. 60.

    Article  CAS  Google Scholar 

  23. Yan, Y., Bateni, R., Harris, J., and Kesler, O., Fabrication of reactive element oxide coatings on porous ferritic stainless steel for use in metal-supported solid oxide fuel cells, Surf. Coat. Technol., 2015, vol. 272, p. 415.

    Article  CAS  Google Scholar 

  24. Zhu, W.Z. and Deevi, S.C., Development of interconnect materials for solid oxide fuel cells, Mater. Sci. Eng., 2003, vol. 348, p. 227.

    Article  Google Scholar 

  25. Boikov, E.V., Vishnetskaya, V., Emel’yanov, A.N., Rufov, Yu.N., and Shcherbakov, N.V.,Partial oxidation of benzene at transition metal oxides deposited onto silica gel, Khim. Fizika, 2007, vol. 26, p. 38 (in Russian).

  26. Anan’ev, V., Solodyankin, A.A., Eremin, V.A., Farlenkov, A.S., Khodimchuk, A.V., Fetisov, A.V., Chernik, A.A., Yaskel’chik, V.V., Ostanina, T.N., and Zaikov, Yu.P., Protective coatings of La–Mn–Cu–O on a 08X17T steel-interconnector for solid-oxide fuel cells obtained by electrocrystallization from nonaqueous electrolyte solutions (in Russian), Izv. Vuzov, Tsvetnaya Metallurgiya, 2017, vol. 6, p. 70.

    Google Scholar 

  27. Zhu, J. H., Chesson, D. A., and Yu, Y. T., Review—(Mn,Co)3O4-Based Spinels for SOFC Interconnect Coating Application, J. Electrochem. Soc., 2021, vol. 168, p. 114519.

    Article  CAS  Google Scholar 

  28. Feng, Q., Yanagisawa, K., and Yamasaki, N., Hydrothermal Soft Chemical Process for Synthesis of Manganese Oxides with Tunnel Structures, J. Porous Mater., 1998, vol. 5, p. 153.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the UMNIK-Tekhnokrat program of the Innovation Promotion Fund, the contract no. 17527GU/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Khramenkova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Delivered at the 20th All-Russian Meeting “Electrochemistry of Organic Compounds” (EKhOS-2022), Novocherkassk, October 18–22, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khramenkova, A.V., Yakovenko, A.A., Yuzhakova, K.R. et al. Study of Properties of the Cobalt–Manganese Spinel-Based Coatings Obtained by the Non-Stationary Electrolysis. Russ J Electrochem 59, 707–713 (2023). https://doi.org/10.1134/S1023193523100075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523100075

Keywords:

Navigation