Skip to main content
Log in

Electrocatalytic Synthesis of p-Aminophenol Using Fe‒Ag Composites

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

p-Aminophenol is synthesized by the electrocatalytic hydrogenation of p-nitrophenol catalyzed by Ag + Fe + Fe3O4 (or Fe2O3) composites formed in the course of thermal treatment and electrochemical reduction of silver ferrite AgFeO2. The AgFeO2 samples are synthesized by co-precipitation in the presence and in the absence of a polymer (polyvinyl alcohol, polyvinylpyrrolidone). It is found that polymers affect the phase composition of metal composites formed both in the stage of synthesis and also after thermal treatment and electrochemical reduction. It is shown that the thus prepared Fe–Ag-containing composites exhibit the high electrocatalytic activity in the electrohydrogenation of p-nitrophenol, increasing its hydrogenation rate by a factor 2.2–2.7 as compared with its electrochemical reduction under similar conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Sahiner, N., Ozay, H., Ozay, O., and Aktas, N., A soft hydrogel reactor for cobalt nanoparticles preparation and use in the reduction of nitrophenols, Appl. Catal. B., 2010, vol. 101, no. 1, p. 137. https://doi.org/10.1016/j.apcatb.2010.09.022

    Article  CAS  Google Scholar 

  2. Zhao, P., Feng, X., Huang, D., Yang, D., and Astruc, D., Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles, Coord. Chem. Rev., 2015, vol. 287, p. 114. https://doi.org/10.1016/j.ccr.2015.01.002

    Article  CAS  Google Scholar 

  3. Zhang, W., Tan, F., Wang, W., Qiu, X., Qiao, X., and Chen, J., Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol, J. Hazard Mater., 2012, vols. 217–218, p. 36. https://doi.org/10.1016/j.jhazmat.2012.01.056

    Article  CAS  PubMed  Google Scholar 

  4. Negrete-Vergara, C., Alvarez-Alcalde, D., Moya, S.A., Paredes-Garcia, V., Fuentes, S., and Venegas-Yazigi, D., Selective hydrogenation of aromatic nitro compounds using unsupported nickel catalysts, ChemistrySelect, 2022, vol. 7, no. 20, Article number: e202200220. https://doi.org/10.1002/slct.202200220

    Article  CAS  Google Scholar 

  5. Vaidya, M.J., Kulkarni, S.M., and Chaudhari, R.V., Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol, Org. Process. Res. Dev., 2003, vol. 7, no. 2, p. 202. https://doi.org/10.1021/op025589w

    Article  CAS  Google Scholar 

  6. Li, Y., Cao, Y., and Jia, D., Enhanced catalytic hydrogenation activity of Ni/reduced graphene oxide nanocomposite prepared by a solid-state method, J. Nanopart. Res., 2018, vol. 20, Article number: 8. https://doi.org/10.1007/s11051-017-4069-2

    Article  CAS  Google Scholar 

  7. Ding, J., Chen, L., Shao, R., Wu, J., and Dong, W., Catalytic hydrogenation of p-nitrophenol to produce p-aminophenol over a nickel catalyst supported on active carbon, React. Kinet., Mech. Catal., 2012, vol. 106, no. 1, p. 225. https://doi.org/10.1007/s11144-011-0417-x

    Article  CAS  Google Scholar 

  8. Gupta, V.K., Atar, N., Yola, M.L., Ustundag, Z., and Uzun, L., A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds, Water Res., 2014, vol. 48, no. 1, p. 210. https://doi.org/10.1016/j.watres.2013.09.027

    Article  CAS  PubMed  Google Scholar 

  9. Kim, J.D., Choi, M.Y., and Choi, H.C., Catalyst activity of carbon nanotube supported Pd catalysts for the hydrogenation of nitroarenes, Mater. Chem. Phys., 2016, vol. 173, p. 404. https://doi.org/10.1016/j.matchemphys.2016.02.030

    Article  CAS  Google Scholar 

  10. Morales, M.V., Conesa, J.M., Rodrigues-Ramos, I., Rocha, M., Freire, C., and Guerrero-Ruiz, A., CuPd bimetallic nanoparticles supported on magnesium oxide as an active and stable catalyst for the reduction of 4-nitrophenol to 4-aminophenol, Int. J. Green Technol., 2017, vol. 3, p. 51. https://doi.org/10.30634/2414-2077.2017.03.5

    Article  Google Scholar 

  11. Kӓstner, C. and Thünemann, A.F., Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity, Langmuir, 2016, vol. 32, no. 29, p. 7383. https://doi.org/10.1021/acs.langmuir.6b01477

    Article  CAS  Google Scholar 

  12. Xiao, C., Chen, S., Zhang, L., Zhou, S., and Wu, W., One-pot synthesis of responsive catalytic Au@PVP hybrid nanogels, Chem. Comm., 2012, vol. 48, p. 11751. https://doi.org/10.1039/c2cc36002k

    Article  CAS  PubMed  Google Scholar 

  13. Nemanashi, M. and Meijboom, R., Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol, J. Colloid Interface Sci., 2013, vol. 389, no. 1, p. 260. https://doi.org/10.1016/j.jcis.2012.09.012

    Article  CAS  PubMed  Google Scholar 

  14. Din, M.I., Khalid, R., Hussain, Z., Hussain, T., Mujahid, A., Najeeb, J., and Izhar, F., Nanocatalytic assemblies for catalytic reduction of nitrophenols: A critical review, Crit. Rev. Anal. Chem., 2020, vol. 50, no. 4, p. 322. https://doi.org/10.1080/10408347.2019.1637241

    Article  CAS  PubMed  Google Scholar 

  15. Hammerich, O., Reduction of nitro compounds and related substrates, In: Organic Electrochemistry, 5th ed., Hammerich O. and Speiser B., Eds., Boca Raton: CRC Press, 2015, pp. 1149–1200. https://doi.org/10.1201/b19122-36

    Book  Google Scholar 

  16. Wirtanen, T., Rodrigo, E., and Waldvogel, S.R., Recent advances in the electrochemical reduction of substrates involving N–O bonds, Adv. Synth. Catal., 2020, vol. 362, p. 2088. https://doi.org/10.1002/adsc.202000349

    Article  Google Scholar 

  17. Serra, A., Artal, R., Pozo, M., Garcia-Amoros, J., and Gomez, E., Simple environmentally-friendly reduction of 4-nitrophenol, Catalysts, 2020, vol. 10, Article number 458. https://doi.org/10.3390/catal10040458

    Article  CAS  Google Scholar 

  18. Song, J., Huang, Z.-F., Pan, L., Li, K., Zhang, X., Wang, L., and Zou, J.-J., Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions, Appl. Catal. B, 2018, vol. 227, p. 386. https://doi.org/10.1016/j.apcatb.2018.01.052

    Article  CAS  Google Scholar 

  19. Ivanova, N.M., Soboleva, E.A., Kulakova, E.V., Malyshev, V.P., and Kirilyus, I.V., Reduction of nitrophenols in an electrocatalytic system, Russ. J. Appl. Chem., 2009, vol. 82, p. 421. https://doi.org/10.1134/s1070427209030148

    Article  CAS  Google Scholar 

  20. Sridharan, K., Endo, T., Cho, S.-G., Kim, J., Park, T.J., and Philip, R., Single step synthesis and optical limiting properties of Ni–Ag and Fe–Ag bimetallic nanoparticles, Opt. Mater., 2013, vol. 35, p. 860. https://doi.org/10.1016/j.optmat.2012.10.053

    Article  CAS  Google Scholar 

  21. Gayen, R.N. and Laha, P., Single-step synthesis and optical properties of bimetallic Fe-Ag nanoparticles, J. Nanosci. Nanotech., 2017, vol. 17, p. 666. https://doi.org/10.1166/jnn.2017.12389

    Article  CAS  Google Scholar 

  22. Nabiyouni, G. and Ghanbari, D., Fe-Ag nanocomposite: Hydrothermal preparation of iron nanoparticles and silver dendrite like nanostructures, J. Nanostruct., 2017, vol. 7, no. 2, p. 111. https://doi.org/10.22052/JNS.2017.02.004

    Article  CAS  Google Scholar 

  23. Sharma, G. and Jeevanandam, P., A facile synthesis of multifunctional iron oxide@Ag core-shell nanoparticles and their catalytic applications, Eur. J. Inorg. Chem., 2013, no. 36, p. 6126. https://doi.org/10.1002/ejic.201301193

  24. Ivanova, N.M., Soboleva, E.A., Visurkhanova, Ya.A., and Muldakhmetov, Z., Electrochemical synthesis of Fe–Cu composites based on copper(II) ferrite and their electrocatalytic properties, Russ. J. Electrochem., 2020, vol. 56, p. 433. https://doi.org/10.1134/s1023193520070034

    Article  CAS  Google Scholar 

  25. Farley, K.E., Marschilok, A.C., Takeuchi, E.S., and Takeuchi, K.J., Synthesis and electrochemistry of silver ferrite, Electrochem. Solid-State Lett., 2011, vol. 15, no. 2, p. A23. https://doi.org/10.1149/2.010202esl

    Article  CAS  Google Scholar 

  26. Murthy, Y.L.N., Rao, T.K., Kasiviswanath, I.V., and Singh, R., Synthesis and characterization of nano silver ferrite composite, J. Magn. Magn. Mater., 2010, vol. 322, p. 2071. https://doi.org/10.1016/j.jmmm.2010.01.036

    Article  CAS  Google Scholar 

  27. Ivanova, N.M., Visurkhanova, Ya.A., Soboleva, E.A., and Kenzhetaeva, S.O., Two-step fabrication of iron-containing polyaniline composites for electrocatalytic hydrogenation of nitroarenes, Electrochem. Comm., 2018, vol. 96, p. 66. https://doi.org/10.1016/j.elecom.2018.09.016

    Article  CAS  Google Scholar 

  28. Nasretdinova, G.R., Fazieeva, R.R., Osin, Y.N., Evtjugin, G., Gubaidullin, A.T., Ziganshina, A.Y., and Yanikin, V.V., Methylviologen mediated electrochemical synthesis of catalytically active ultrasmall bimetallic PdAg nanoparticles stabilized by CTAC, Electrochim. Acta, 2018, vol. 285, p. 149. https://doi.org/10.1016/j.electacta.2018.07.109

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Science Committee of the Ministry of Science and Higher Education of the Kazakhstan Republic (Scientific and Technical Program No. BR10965230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Vissurkhanova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Delivered at the 20th All-Russian Meeting “Electrochemistry of Organic Compounds” (EKhOS-2022), Novocherkassk, October 18–22, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, N.M., Vissurkhanova, Y.A., Soboleva, E.A. et al. Electrocatalytic Synthesis of p-Aminophenol Using Fe‒Ag Composites. Russ J Electrochem 59, 787–796 (2023). https://doi.org/10.1134/S1023193523100051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523100051

Keywords:

Navigation