Skip to main content
Log in

Voltammetric Study of the Complexation of Propafenone Hydrochloride (Rythmol SR) with Co2+, Ni2+, Zn2+, and Mn2+ Ions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Square-wave (SW) voltammetric investigation of the binding processes of propafenone hydrochloride (PFOH) with Co2+, Ni2+, Zn2+, and Mn2+ ions was carried out at pH of 7.4. For the formed complexes, both average stoichiometries and stability constants were found by means of modified De Ford–Hume method. According to SW voltammetric data, the metal : ligand ratio of 1 : 2 for Mn2+ was obtained. Moreover, PFOH formed complexes in average metal : ligand ratio of 1 : 2 for Ni2+ and Zn2+; however, this average ratio was 1 : 6 for the Co2+ complex in the solution phase. The order of their stability constants was observed to obey Co(PFOH)6 \( \gg \) Ni(PFOH)2 > Zn(PFOH)2 > Mn(PFOH)2. Also, the ligand numbers and formation constants of the successively formed Co(PFOH)j, Ni(PFOH)j, and Zn(PFOH)j complexes in solution phase were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Siva, S., Thulasidhasan, J., and Rajendiran, N., Host-guest inclusion complex of propafenone hydrochloride with α- and β-cyclodextrins: spectral and molecular modeling studies, Spectrochim. Acta A, 2013, vol. 115, p. 559. https://doi.org/10.1016/j.saa.2013.06.079

    Article  CAS  Google Scholar 

  2. Hong, Y., Tang, Y., and Zeng, S., Enantioselective plasma protein binding of propafenone: mechanism, drug interaction, and species difference, Chirality, 2009, vol. 21, p. 692. https://doi.org/10.1002/chir.20666

    Article  CAS  PubMed  Google Scholar 

  3. Stohler, J.L., Kowey, P.R., Marinchak, R.A., and Friehling, T.D., Drug interactions with propafenone, J. Electrophysiol., 1987, vol. 1, p. 568. https://doi.org/10.1111/j.1540-8167.1987.tb01449.x

    Article  Google Scholar 

  4. Fraga, C.G., Relevance, essentiality and toxicity of trace elements in human health, Mol. Aspects Med., 2005, vol. 26, p. 235. https://doi.org/10.1016/j.mam.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  5. Yang, C.Y., Wu, M.L., Chou, Y.Y., Li, S.Y., Deng, J.F., Yang, W.C., and Ng, Y.Y., Essential trace element status and clinical outcomes in long-term dialysis patients: a two-year prospective observational cohort study, Clin. Nutr., 2012, vol. 31, p. 630. https://doi.org/10.1016/j.clnu.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  6. Maxwell, P. and Salnikow, K., HIF-1: an oxygen and metal responsive transcription factor, Cancer Biol. Ther., 2004, vol. 3, p. 29. https://doi.org/10.4161/cbt.3.1.547

    Article  CAS  PubMed  Google Scholar 

  7. Feng, W., Cui, X., Liu, B., Liu, C., Xiao, Y., Lu, W., Guo, H., He, M., Zhang, X., Yuan, J., Chen, W., and Wu, T., Association of urinary metal profiles with altered glucose levels and diabetes risk: a population-based study in China, PLoS One, 2015, vol. 10, p. e0123742. https://doi.org/10.1371/journal.pone.0123742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Feng, W., He, X., Chen, M., Deng, S., Qiu, G., Li, X., Liu, C., Li, J., Deng, Q., Huang, S., Wang, T., Dai, X., Yang, B., Yuan, J., He, M., Zhang, X., Chen, W., Kan, H., and Wu, T., Urinary metals and heart rate variability: a cross-sectional study of urban adults in Wuhan, China, Environ. Health Perspect., 2015, vol. 123, p. 217. https://doi.org/10.1289/ehp.1307563

    Article  PubMed  Google Scholar 

  9. Mendy, A., Gasana, J., and Vieira, E.R., Urinary heavy metals and associated medical conditions in the US adult population, Int. J. Environ. Health Res., 2012, vol. 22, p. 105. https://doi.org/10.1080/09603123.2011.605877

    Article  CAS  PubMed  Google Scholar 

  10. Navas-Acien, A., Guallar, E., Silbergeld, E.K., and Rothenberg, S.J., Lead exposure and cardiovascular disease—a systematic review, Environ. Health Perspect., 2007, vol. 115, p. 472. https://doi.org/10.1289/ehp.9785

    Article  CAS  PubMed  Google Scholar 

  11. Park, S.K., Schwartz, J., Weisskopf, M., Sparrow, D., Vokonas, P.S., Wright, R.O., Coull, B., Nie, H., and Hu, H., Low-level lead exposure, metabolic syndrome, and heart rate variability: the VA normative aging study, Environ. Health Perspect., 2006, vol. 114, p. 1718. https://doi.org/10.1289/ehp.8992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Druz, R.S., Chelation therapy for cardiovascular disease: bringing it back to the future, J. Restor. Med., 2015, vol. 4, p. 33. https://doi.org/10.14200/jrm.2015.4.0107

    Article  Google Scholar 

  13. Getova, V.T., Bontchev, R.P., Mehandjiev, D.R., and Bontchev, P.R., Complexes of 1-[2-[2-hydroxy-3-(propylamino)propoxy]phenyl]-3-phenyl-1-propanone (propafenone) with copper(II): crystal structure of the mononuclear Cu(II) complex with propafenone, Polyhedron, 2006, vol. 25, p. 2254. https://doi.org/10.1016/j.poly.2006.01.027

    Article  CAS  Google Scholar 

  14. Caumul, P., Boodhoo, K., Burkutally, S.B., Seeruttun, S., Namooya, N., Ramsahye, N., and Joondan, N., Synthesis and analysis of metal chelating amino and diamine precursors and their complex formation on copper (II) using conductivity and spectroscopic methods, Res. J. Pharm. Biol. Chem. Sci., 2014, vol. 5, p. 494.

    CAS  Google Scholar 

  15. Yari, A. and Bagheri, H., Voltammetric study of the complexation of (2E,3E)-2H-1,4-benzothiazine-2,3 (4H)-dionedioxime, a newly synthesized oxime derivative, with nickel(II), J. Coord. Chem., 2009, vol. 62, p. 3012. https://doi.org/10.1080/00958970903006183

    Article  CAS  Google Scholar 

  16. Osteryoung, J. and O’Dea, J.J., Square-wave voltammetry, in Electroanalytical Chemistry, Bard, A.J., Ed., New York: Marcel Dekker, 1986, vol. 14, p. 209.

    Google Scholar 

  17. Eccles, G.N., Recent advances in pulse, cyclic and square-wave voltammetric analysis, Crit. Rev. Anal. Chem., 1991, vol. 22, p. 345. https://doi.org/10.1080/10408349108051639

    Article  CAS  Google Scholar 

  18. Lovrić, M., Square-wave voltammetry, in Electroanalytical Methods, Scholz, F., Ed., Berlin: Springer, 2002.

    Google Scholar 

  19. Souza, D., Machado, S.A.S., and Avaca, L.A., Voltametria de onda quadrada: primeira parte: aspectos teóricos, Quim. Nova, 2003, vol. 26, p. 81. https://doi.org/10.1590/S0100-40422003000100015

    Article  CAS  Google Scholar 

  20. Souza, D., Codognoto, L., Malagutti, A.R., Toledo, R.A., Pedrosa, V.A., Oliveira, R.T.S., Mazo, L.H., Avaca, L.A., and Machado, S.A.S., Voltametria de onda quadrada. Segunda parte: aplicações, Quim. Nova, 2004, vol. 27, p. 790. https://doi.org/10.1590/S0100-40422004000500019

    Article  Google Scholar 

  21. Mirceski, V., Komorsky-Lovric, S., and Lovric, M., Square-wave voltammetry: theory and application, in Monographs in Electrochemistry, Scholz, F., Ed., Berlin: Springer, 2007.

    Google Scholar 

  22. Mirceski, V., Gulaboski, R., Lovric, M., Bogeski, I., Kappl, R., and Hoth, M., Square-wave voltammetry: a review on the recent progress, Electroanalysis, 2013, vol. 25, p. 2411. https://doi.org/10.1002/elan.201300369

    Article  CAS  Google Scholar 

  23. Zamay, G.S., Zamay, T.N., Kolovskii, V.A., Shaba-nov, A.V., Glazyrin, Y.E., Veprintsev, D.V., Krat, A.V., Zamay, S.S., Kolovskaya, O.S., Gargaun, A., Sokolov, A.E., Modestov, A.A., Artyukhov, I.P., Chesnokov, N.V., Petrova, M.M., Berezovski, M.V., and Zamay, A.S., Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples, Sci. Rep., 2016, vol. 6, art. no. 34350. https://doi.org/10.1038/srep34350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Melesse, T., Voltammetric determination of stability constants of lead complexes with vitamin C, M.Sc. Project, Addis Ababa University, School of Graduate Studies, Department of Chemistry, 2008.

    Google Scholar 

  25. Osteryoung, J.G. and Osteryoung, R.A., Square wave voltammetry, Anal. Chem., 1985, vol. 57, p. 101. https://doi.org/10.1021/ac00279a789

    Article  Google Scholar 

  26. Smith, E.T. and Feinberg, B.A., Redox properties of several bacterial ferredoxins using square wave voltammetry, J. Biol. Chem., 1990, vol. 265, p. 14371. https://doi.org/10.1016/S0021-9258(18)77311-0

    Article  CAS  PubMed  Google Scholar 

  27. Mlakar, M., Culjak, I., and Branica, M., Square-wave voltammetry of copper-phenanthroline-tributylphosphate complex, Analyst, 1994, vol. 119, p. 2443. https://doi.org/10.1039/AN9941902443

    Article  CAS  Google Scholar 

  28. Ibrahim, A.A. and Yahya, R., Electrochemical study of the complexation of methyl yellow with some metal ions as a model for doped poly azo compound, Asian J. Chem., 2012, vol. 24, p. 2634.

    CAS  Google Scholar 

  29. Abed, A.N. and Ibrahim, A.A., Theoretical, voltammetric and thermodynamic study for cadmium(II)-tyrosine complex at 293–313 K, Egypt. J. Chem., 2021, vol. 64, p. 5555. https://doi.org/10.21608/EJCHEM.2021.76080.3718

    Article  Google Scholar 

  30. Nezhadali, A. and Sharifi, H., Study of complex formation constants for some cations with o-phenylenediamine in binary systems using square wave polarography technique, Engineering, 2010, vol. 2, p. 1026. https://doi.org/10.4236/eng.2010.212129

    Article  CAS  Google Scholar 

  31. Souza, M.D.P., Conceição, E.A., Brasil, S.L.D.C., and Melo, R.S., Quantification of iron using its amine complexes by square wave voltammetry in alkaline solutions, Int. J. Electrochem. Sci., 2021, vol. 16, art. no. 21102. https://doi.org/10.20964/2021.10.23

    Article  CAS  Google Scholar 

  32. Çakır, S., Coşkun, E., Biçer, E., and Cakır, O., Electrochemical study of the complexes of aspartame with Cu(II), Ni(II) and Zn(II) ions in the aqueous medium, Carbohydrate Res., 2003, vol. 338, p. 1217. https://doi.org/10.1016/S0008-6215(03)00111-3

    Article  CAS  Google Scholar 

  33. Biçer, E. and Çınar, E., Voltammetric study of the interaction of pentoxifylline (PTX) with Zn(II) in the presence and absence of cysteine, J. Coord. Chem., 2005, vol. 58, p. 775. https://doi.org/10.1080/00958970500092784

    Article  CAS  Google Scholar 

  34. Biçer, E. and Coşkun, E., Voltammetric study of the interaction between oxacillin sodium and cysteine in the presence and absence of Mn(II) ions in neutral buffer solution, J. Serb. Chem. Soc., 2007, vol. 72, p. 1003. https://doi.org/10.2298/JSC0710003B

    Article  CAS  Google Scholar 

  35. Coşkun, E., Duman, E., Acar, N., and Biçer, E., Electrochemical, spectroscopic and computational studies on complexation of oxacillin with Cu(II) and Co(II) ions. Synthesis and ligand hydrolysis, Int. J. Electrochem. Sci., 2017, vol. 12, p. 9364. https://doi.org/10.20964/2017.10.43

    Article  CAS  Google Scholar 

  36. Acha Billy, T., Propafenon hidroklorür’ün Co(II), Ni(II), Zn(II) ve Mn(II) iyonlarıyla etkileşimlerinin fizyolojik pH’da voltametrik teknikler ile incelenmesi, MSc Thesis, Samsun: Ondokuz Mayıs Univ., 2020.

  37. Omanović, D. and Branica, M., Automation of voltammetric measurements by polarographic analyser PAR 384B, Croat. Chem. Acta, 1998, vol. 71, p. 421.

    Google Scholar 

  38. Ni, H.-g., Ning, M.-x., and Zheng, J.-b., Oscillographic determination of propafenone hydrochloride, J. Instrum. Anal., 2004, vol. 23, p. 61.

    CAS  Google Scholar 

  39. Qun-xing, Z., Single sweep oscilloploargraphy of propafenone hydrochloride, Guangzhou Chem. Ind., 2010, vol. 38, p. 164, 177.

    Google Scholar 

  40. Zhenhui, W., Shuping, Z., and Xianzhuang, L., Determination of propafenone by adsorptive stripping voltammetry, Chin. J. Anal. Chem., 1992, vol. 7, p. 750.

    Google Scholar 

  41. Zhang, H.-F., Zhang, Y., Yang, R.-L., and Zheng, J.-B., Electroreduction behavior of propafenone and its application, Chin. J. Appl. Chem., 2009, vol. 26, p. 104.

    CAS  Google Scholar 

  42. Alimohammadi, S., Kiani, M.A., Imani, M., Rafii-Tabar, H., and Sasanpour, P., Electrochemical determination of dexamethasone by graphene modified electrode: experimental and theoretical investigations, Sci. Rep., 2019, vol. 9, art. no. 11775. https://doi.org/10.1038/s41598-019-47420-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharda, and Pandey, R., Electrochemical behaviour of fourth-generation fluoroquinolone antibacterial drug moxifloxacin by dc polarography and cyclic voltammetry, Int. J. Pharm. Pharm. Sci., 2012, vol. 4, p. 349.

  44. Heyrovský, J. and Kůta, J., Principles of Polarography, New York: Acad. Press, 1966.

    Google Scholar 

  45. Hawthorne, K.L., Wainright, J.S., and Savinell, R.F., Studies of iron-ligand complexes for an all-iron flow battery application, J. Electrochem. Soc., 2014, vol. 161, p. A1662. https://doi.org/10.1149/2.0761410jes

    Article  CAS  Google Scholar 

  46. El-Sayed, G.O. and Issa, Y.M., Polarographic investigation of Co(II), Ni(II) and Zn(II) complexes with procaine, Anal. Lett., 1997, vol. 30, p. 2279. https://doi.org/10.1080/00032719708001739

    Article  CAS  Google Scholar 

  47. Karadia, C. and Gupta, O.D., Polarograhic studies on the complexes of Ga(III), In(III) and Tl(I) with histidine, Rasayan J. Chem., 2009, vol. 2, p. 18.

    CAS  Google Scholar 

  48. Karadia, C., Sharma, S., and Gupta, O.D., Electrochemical studies of cadmium(II) complexes with itaconic acid in non-aqueous media at dropping mercury electrode, Asian J. Chem., 2010, vol. 22, p. 31.

    CAS  Google Scholar 

  49. Scally, S., Davison, W., and Zhang, H., Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films, Anal. Chim. Acta, 2006, vol. 558, p. 222. https://doi.org/10.1016/j.aca.2005.11.020

    Article  CAS  Google Scholar 

  50. Österlund, H., Applications of the DGT technique for measurements of anions and cations in natural waters, Licentiate Thesis, Luleå: Luleå Univ. of Technology, Dep. of Chemical Engineering and Geosciences, 2010.

  51. Díaz-Cruz, M.S., Díaz-Cruz, J.M., Mendieta, J., Tauler, R., and Esteban, M., Soft- and hard modeling approaches for the determination of stability constants of metal-peptide systems by voltammetry, Anal. Biochem., 2000, vol. 279, p. 189. https://doi.org/10.1006/abio.2000.4488

    Article  CAS  PubMed  Google Scholar 

  52. Esteban, M., Ariño, C., and Díaz-Cruz, J.M., Metal complexation by electroanalytical techniques: hard- and soft-modelling approaches, Contrib. Sci., 2003, vol. 2, p. 359.

    Google Scholar 

  53. Islam, G.J., Zannah, S., and Ehsan, M.Q., Study on the redox behavior of biological important metal ion (Cu2+) and its interaction with metronidazole drug in aqueous solution, J. Eng. Sci., 2014, vol. 5, p. 61.

    Google Scholar 

  54. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2000.

    Google Scholar 

  55. Conway, B.E., Theory and Principles of Electrode Processes, 1st ed., New York: The Ronald Press Co., 1965.

    Google Scholar 

  56. Nicholson, R.S., Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics, Anal. Chem., 1965, vol. 37, p. 1351. https://doi.org/10.1021/ac60230a016

    Article  CAS  Google Scholar 

  57. DuVall, S.H. and McCreery, R.L., Control of catechol and hydroquinone electron-transfer kinetics on native and modified glassy carbon electrodes, Anal. Chem., 1999, vol. 71, p. 4594. https://doi.org/10.1021/ac990399d

    Article  CAS  Google Scholar 

  58. Ngila, J.C., Silavwe, N., Kiptoo, J.K., and Thabano, J.E.R., Voltammetric investigation of the distribution of hydroxo-, chloro-, EDTA and carbohydrate complexes of lead, chromium, zinc, cadmium and copper: potential application to metal speciation studies in brewery wastewater, Bull. Chem. Soc. Ethiopia, 2005, vol. 19, p. 125.

    CAS  Google Scholar 

  59. Meites, L., Polarographic Techniques, New York: Brooklyn, 1964.

  60. Seo, M.-L., Bae, Z.-U., and Park, T.-M., Electrochemical study of nickel(II) complexes with diaza-macrocyclic ligands in acetonitrile, Bull. Korean Chem. Soc., 1991, vol. 12, p. 368.

    CAS  Google Scholar 

  61. Antunes, M.C., Simão, J.E., Duarte, A.C., Esteban, M., and Tauler, R., Application of multivariate curve resolution to the voltammetric study of the complexation of fulvic acids with cadmium(II) ion, Anal. Chim. Acta, 2002, vol. 459, p. 291. https://doi.org/10.1016/S0003-2670(02)00117-4

    Article  CAS  Google Scholar 

  62. Esteban, M., Ariño, C., Díaz-Cruz, J.M., Díaz-Cruz, M.S., and Tauler, R., Multivariate curve resolution with alternating least squares optimisation: a soft-modelling approach to metal complexation studies by voltammetric techniques, Trends Anal. Chem., 2000, vol. 19, p. 49. https://doi.org/10.1016/S0165-9936(99)00184-3

    Article  CAS  Google Scholar 

  63. Kamyabi, M.A., Soleymani-Bonoti, F., and Zakavi, S., Voltammetric study of Cd2+ complexation with some compounds of garlic, J. Appl. Chem. Res., 2017, vol. 11, p. 71.

    Google Scholar 

  64. Urbańska, J., Polarographic behavior of manganese(II) in the presence of oxalate ions in perchlorate and sulfate solutions, J. Solution Chem., 2011, vol. 40, p. 247. https://doi.org/10.1007/s10953-011-9649-7

    Article  CAS  Google Scholar 

  65. Nepomnyashchii, A.B., Alpuche-Aviles, M.A., Pan, S., Zhan, D., Fan, F.-R.F., and Bard, A.J., Cyclic voltammetry studies of Cd2+ and Zn2+ complexation with hydroxyl-terminated polyamidoamine generation 2 dendrimer at a mercury microelectrode, J. Electroanal. Chem., 2008, vol. 621, p. 286. https://doi.org/10.1016/j.jelechem.2008.01.025

    Article  CAS  Google Scholar 

  66. Kamble, A.D., Barhate, V.D., and Salunke, M.H., Electrochemical study of primaquine diphosphate in presence of uranyl nitrate in aqueous media, Int. J. Chem. Tech. Res., 2012, vol. 4, p. 962.

    CAS  Google Scholar 

  67. Nanda, N., Tanu, M., and Mayanna, S.M., Cyclic voltammetric study of biologically active metal ions with norfloxacin, Indian J. Chem. Techn., 1999, vol. 6, p. 325.

    CAS  Google Scholar 

  68. DeFord, D.D. and Hume, D.N., The determination of consecutive formation constants of complex ions from polarographic data, J. Am. Chem. Soc., 1951, vol. 73, p. 5321. https://doi.org/10.1021/ja01155a093

    Article  CAS  Google Scholar 

  69. Crow, D.R., Polarography of Metal Complexes, New York: Acad. Press, 1969.

    Google Scholar 

  70. Vega, M., Pardo, R., Herguedas, M.M., Barrado, E., and Castrillejo, Y., Pseudopolarographic determination of stability constants of labile zinc complexes in fresh water, Anal. Chim. Acta, 1995, vol. 310, p. 131. https://doi.org/10.1016/0003-2670(95)00116-H

    Article  CAS  Google Scholar 

  71. Komorsky-Lovrić, Š. and Branica, M., Trace metal speciation by ASV Part VII. Interaction of zinc with Cl, \({\text{NO}}_{3}^{ - }\), I, \({\text{SO}}_{4}^{{2 - }}\) and OH, J. Electroanal. Chem. Interfacial Electrochem., 1987, vol. 226, p. 253. https://doi.org/10.1016/0022-0728(87)80048-710.1016/0022-0728(87)80048-7

    Article  Google Scholar 

  72. Simões Gonçalves, M.L.S. and Correia dos Santos, M.M., Determination of stability constants of quasi-reversible systems: copper chlorocomplexes in seawater conditions, J. Electroanal. Chem. Interfacial Electrochem., 1983, vol. 143, p. 397. https://doi.org/10.1016/S0022-0728(83)80276-9

    Article  Google Scholar 

  73. Komorsky-Lovrić, Š., Lovrić, M., and Branica, M., Application of ASV for trace metal speciation. Part V. The pseudo-polarography of zinc by RGCE, J. Electroanal. Chem. Interfacial Electrochem., 1986, vol. 214, p. 37. https://doi.org/10.1016/0022-0728(86)80084-5

    Article  Google Scholar 

  74. Çakır, O., Coşkun, E., Biçer, E., and Cakır, S., Voltammetric and polarographic studies of eriochrome black T–Nickel(II) complex, Turk. J. Chem., 2001, vol. 25, p. 33.

    Google Scholar 

  75. Crow, D.R. and Westwood, J.V., The study of complexed metal ions by polarographic methods, Q. Rev. Chem. Soc., 1965, vol. 19, p. 57. https://doi.org/10.1039/QR9651900057

    Article  CAS  Google Scholar 

  76. Kislik, V.S., Solvent Extraction: Classical and Novel Approaches, Oxford UK: Elsevier, 2012, chapter 1.

    Google Scholar 

  77. Gammons, C.H., Wood, S.A., and Li, Y., Complexation of the rare earth elements with aqueous chloride at 200°C and 300°C and saturated water vapor pressure, in Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry: a Tribute to David A. Crerar, Hellmann, R. and Wood, S.A., Eds., The Geochemical Society, 2002, spec. publ. no. 7, p. 191.

  78. Filho, O.B., Thiocyanate leaching of gold, PhD Thesis, Technology and Medicine University of London, 1991.

  79. Cheetham, A.K., Rao, C.N.R., and Feller, R.K., Structural diversity and chemical trends in hybrid inorganic-organic framework materials, Chem. Commun., 2006, p. 4780. https://doi.org/10.1039/B610264F

  80. Medda, M.P., Piccaluga, G., Pinna, G., Bettinelli, M., and Cormier, G., Coordination of Eu3+ ions in a phosphate glass by X-ray diffraction, Z. Naturforschung A, 1994, vol. 49, p. 977. https://doi.org/10.1515/zna-1994-1014

  81. Atanassova, M., Kurteva, V., and Billard, I., Coordination chemistry of europium(III) ion towards acylpyrazolone ligands, Anal. Sci., 2015, vol. 31, p. 917. https://doi.org/10.2116/analsci.31.917

    Article  CAS  PubMed  Google Scholar 

  82. Hovey, J.L., Dittrich, T.M., and Allen, M.J., Coordination chemistry of surface-associated ligands for solide-liquid adsorption of rare-earth elements, J. Rare Earths, 2023, vol. 41, p. 1. https://doi.org/10.1016/j.jre.2022.05.012

  83. Majid, K., Mushtaq, R., and Ahmad, S., Synthesis, characterization and coordinating behaviour of aminoalcohol complexes with transition metals, E-J. Chem., 2008, vol. 5, p. 969. https://doi.org/10.1155/2008/680324

    Article  CAS  Google Scholar 

  84. McAuliffe, C.A., Zinc-containing metalloenzymes in Techniques and Topics in Bioinorganic Chemistry, McAuliffe, C.A., Ed., Part 1: Structural and Electronic Aspects of Metal Ions in Proteins, Makinen, M.W., Ed., London: Macmillan Press, 1975, p. 75.

Download references

ACKNOWLEDGMENTS

This manuscript was mostly produced from MSc Thesis of the first author and supervised by the second author. Also, this study was presented in part and in poster form at 3rd International Eurasian Conference on Biological and Chemical Sciences (EurasianBioChem 2020), 19–20 March 2020, Abstract Book, p. 631, Ankara/TURKEY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender Biçer.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temban Acha Billy, Ender Biçer Voltammetric Study of the Complexation of Propafenone Hydrochloride (Rythmol SR) with Co2+, Ni2+, Zn2+, and Mn2+ Ions. Russ J Electrochem 59, 797–808 (2023). https://doi.org/10.1134/S1023193523100038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523100038

Keywords:

Navigation