Skip to main content
Log in

Modeling of the Metal Microstructure Formation by Local Electrodeposition onto Conducting Substrates

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The formation of metal microstructures on metal substrates is theoretically analyzed by the example of local silver electrodeposition, using the numerical simulation of interrelated electrochemical and homogeneous chemical reactions. The silver electrodeposition localization and rate are shown to depend on the interrelation between full concentrations of ammonia, silver, and protons in solution. The ammonia relative concentration range is determined, which provided an acceptable combination of the silver electrodeposition localization and rate. By using some simplifications, the distributions of the concentrations of the participants in the reactions and the current density of silver ion reduction are numerically calculated for various concentrations of solution components and interelectrode distances. The degree of localization of metal deposition is shown to depend on the distribution of the concentrations of electroactive silver cations and the non-electroactive complex of this metal near the anode. The deposition rate was found to depend nonmonotonously on the interelectrode distances, which can be explained by difficulties in the reactants’ delivery at small interelectrode distances and increase of the fraction of the silver electroactive ions diffusing toward solution bulk at large interelectrode distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Madden, J.D. and Hunter, I.W., Three-dimensional microfabrication by localized electrochemical deposition, J. Microelectromech. Syst., 1996, vol. 5 (1), p. 24.

    Article  CAS  Google Scholar 

  2. Braun, T.M. and Schwartz, D.T., The emerging role of electrodeposition in additive manufacturing, Electrochem. Soc. Interface, 2016, vol. 25 (1), p. 69.

    Article  CAS  Google Scholar 

  3. Davydov, A.D. and Volgin, V.M., Electrochemical local maskless micro/nanoscale deposition, dissolution, and oxidation of metals and semiconductors (a review), Russ. J. Electrochem., 2020, vol. 56 (1), p. 52.

    Article  CAS  Google Scholar 

  4. Xinchao, L., Pingmei, M., Sansan, A., and Wei, W., Review of additive electrochemical micro-manufacturing technology, Int. J. Mach. Tool. Manu., 2021, Art. 103848.

  5. Han, L., Sartin, M.M., Tian, Z.Q., Zhan, D., and Tian, Z.W., Electrochemical nanomachining, Curr. Opin. Electrochem., 2020, vol. 22, p. 80.

    Article  CAS  Google Scholar 

  6. Volgin, V.M., Kabanova, T.B., and Davydov, A.D., Modeling of local maskless electrochemical deposition of metal microcolumns, Chem. Eng. Sci., 2018, vol. 183, p. 123.

    Article  CAS  Google Scholar 

  7. Morsali, S., Daryadel, S., Zhou, Z., Behroozfar, A., Baniasadi, M., Moreno, S., Qian, D., and Minary-Jolandan, M., Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of nozzle speed and diameter, J. Appl. Phys., 2017, vol. 121 (21), p. 214305.

    Article  Google Scholar 

  8. Meltzer, S. and Mandler, D., Microwriting of gold patterns with the scanning electrochemical microscope, J. Electrochem. Soc., 1995, vol. 142. p. L82.

    Article  CAS  Google Scholar 

  9. De Abril, O., Mandler, D., and Unwin, P.R., Local cobalt electrodeposition using the scanning electrochemical microscope, Electrochem. Solid-State Lett., 2004, vol. 7, p. C71.

    Article  CAS  Google Scholar 

  10. Hirt, L., Gruter, R.R., Berthelot, T., Cornut, R., Voros, J., and Zambelli, T., Local surface modification via confined electrochemical deposition with FluidFM, RSC Adv., 2015, vol. 5, p. 84517.

    Article  CAS  Google Scholar 

  11. Hirt, L., Ihle, S., Pan, Z., Dorwling-Carter, L., Reiser, A., Wheeler, J.M., Prolenak, R., Voros, J., and Zambelli, T., Template-free 3D microprinting of metals using a force-controlled nanopipette for layer-by-layer electrodeposition, Adv. Mater., 2016, vol. 28, p. 2311.

    Article  CAS  PubMed  Google Scholar 

  12. Feng, Z., Xie, Y., and Georgescu, N.S., High-Resolution Nanoprinting Approach through Self-Driven Electrodeposition, J. Electrochem. Soc., 2019, vol. 166 (1), p. D3200.

    Article  CAS  Google Scholar 

  13. Ren, W., Xu, J., Lian, Z., Yu, P., and Yu, H., Modeling and Experimental Study of the Localized Electrochemical Micro Additive Manufacturing Technology Based on the Fluid FM, Materials, 2020, vol. 13 (12), p. 2783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Borgwarth, K., Ricken, C., Ebling, D.G., and Heinze, J., Surface characterisation and modification by the scanning electrochemical microscope (SECM), Ber. Bunsenges. Phys. Chem., 1995, vol. 99, p. 1421.

    Article  CAS  Google Scholar 

  15. Borgwarth, K. and Heinze, J., Increasing the resolution of the scanning electrochemical microscope using a chemical lens: Application to silver deposition, J. Electrochem. Soc., 1999, vol. 146, p. 3285.

    Article  CAS  Google Scholar 

  16. Radtke, V. and Heinze, J., Scanning electrochemical microscopy as a versatile tool for modifying surfaces, Z. Phys. Chem., 2004, vol. 218 (1), p. 103.

    CAS  Google Scholar 

  17. Ufheil, J., Hess, C., Borgwarth, K., and Heinze, J., Nanostructuring and nanoanalysis by scanning electrochemical microscopy (SECM), Phys. Chem. Chem. Phys., 2005, vol. 7 (17), p. 3185.

    Article  CAS  PubMed  Google Scholar 

  18. Radtke, V., Hess, C., Souto, R.M., and Heinze, J., Electroless, electrolytic and galvanic copper deposition with the Scanning Electrochemical Microscope (SECM), Z. Phys. Chem., 2006, vol. 220 (4), p. 393.

    Article  CAS  Google Scholar 

  19. Newman, J.S., Electrochemical Systems, Englewood Cliffs, NJ: Prentice Hall, 1973.

    Google Scholar 

  20. Sukhotin, A.M., Handbook of Electrochemistry, Leningrad: Khimiya, 1981.

    Google Scholar 

  21. Frank, M.J., Kuipers, J.A., and van Swaaij, W.P., Diffusion coefficients and viscosities of CO2 + H2O, CO2 + CH3OH, NH3 + H2O, and NH3 + CH3OH liquid mixtures, J. Chem. Eng. Data, 1996, vol. 41 (2), p. 297.

    Article  CAS  Google Scholar 

  22. Butler, J.N., Ionic Equilibrium: A Mathematical Approach, Reading, Mass.: Addison–Wesley, 1964.

    Google Scholar 

Download references

Funding

The reported study was supported by the Ministry of Sciences and Higher Education of the Russian Federation and the Russian Foundation of Basic Research and the Tula Region according to the research project no. 19-48-710008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Volgin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volgin, V.M., Kabanova, T.B., Gnidina, I.V. et al. Modeling of the Metal Microstructure Formation by Local Electrodeposition onto Conducting Substrates. Russ J Electrochem 59, 635–645 (2023). https://doi.org/10.1134/S1023193523090112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523090112

Keywords:

Navigation