Skip to main content
Log in

Analysis of Lithium Diffusion in the Cathode Material Particles of Primary Lithium–Manganese Cells by the Measuring of Electrochemical Noise and Magnetoresistance Relaxation

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The process of lithium diffusion in the cathode material of lithium–manganese chemical power sources after a short-term discharge is investigated by analyzing the relaxation parameters of electrochemical noise and the magnitude of the injected lithium layer Magnetoresistance. Fluctuations in the lithium diffusion flux are shown being the source of electrochemical noise in this chemical power source. The data obtained also confirm the assumption made in the literature about the formation, during the cell discharge, of a poorly conducting phase with a spinel crystal structure in the surface layer of MnO2 particles, which inhibits the diffusion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Molenda, J., Ziemnicki, M., Molenda, M., Bućko, M., and Marzec, J., Transport and electrochemical properties of orthorhombic LiMnO2 cathode material for Li-ion batteries, Mater. Sci. Poland, 2006, vol. 24, p.75.

    CAS  Google Scholar 

  2. Tan, H. and Wang, S., Kinetic behavior of manganese dioxide in Li/MnO2 primary batteries investigated using electrochemical impedance spectroscopy under nonequilibrium state, J. Electrochem. Soc., 2014, vol. 161, p. A1927. https://doi.org/10.1149/2.0981412jes

    Article  CAS  Google Scholar 

  3. Astafev, E.A. and Dobrovolsky, Yu.A., Relaxation electrochemical noise of Li/SOCl2 and Li/MnO2 primary batteries, J. Solid State Electrochem., 2019, vol. 23, p. 3319. https://doi.org/10.1007/s10008-019-04425-z

    Article  CAS  Google Scholar 

  4. Astafev, E.A., Ukshe, A.E., and Dobrovolsky, Y.A., Measurement of electrochemical noise of a Li/MnO2 primary lithium battery, J. Solid State Electrochem., 2018. vol. 22, p. 3597. https://doi.org/10.1007/s10008-018-4074-0

    Article  CAS  Google Scholar 

  5. Ukshe, A.E. and Astafev, E.A., Magnetoresistance analysis of intercalated lithium layer relaxation following discharge of primary lithium-manganese elements, J. Solid State Electrochem., 2022, vol. 26, p. 2765. https://doi.org/10.1007/s10008-022-05271-2

    Article  CAS  Google Scholar 

  6. Koshkina, A.A., Yaroslavtseva, T.V., Ukshe, A.E., Kuznetsov, M.V., Surikov, V.T., and Bushkova, O.V., Degrading of the lithium–manganese surface contacting electrolyte solution containing lithium hexafluorphosphate, Elektrokhim. Energetika (in Russian), 2023.

    Google Scholar 

  7. Tikhonov, A.N. And Samarskii, A.A., Equations of Mathematical Physics (in Russian), Moscow: Nauka, 2004.

    Google Scholar 

  8. Tsukanov, D.A and Ryzhkova, M.V., Study of structire and electrical properties of the Si(111) reconstructed surface upon lithium adsorption, Zh. Tekh. Fis., 2022, vol. 92, p. 1224. https://doi.org/10.21883/JTF.2022.08.52788.83-22

    Article  Google Scholar 

  9. Crooks, G.E., Entropy Production Fluctuation Theorem and the Nonequilibrium Work Relation for Free Energy Differences, Phys. Rev. E, 1999, vol. 60, p. 2721. [Crooks, G.E., The Entropy Production Fluctuation Theorem and the Nonequilibrium Work Relation for Free Energy Differences, arXiv:cond-mat/9901352v4. DOI 10.48550/arXiv.cond-mat/9901352]https://doi.org/10.1103/PhysRevE.60.2721

    Article  CAS  Google Scholar 

  10. Astafev, E.A., Comparing the method and hardware for electrochemical impedance with the method of measuring and analyzing electrochemical noise, Russ. J. Electrochem., 2018, vol. 54, p. 1022. https://doi.org/10.1134/S1023193518130049

    Article  CAS  Google Scholar 

  11. Grafov, B.M., Fractal theory of electrochemical diffusion noise, Russ. J. Electrochem., 2015, vol. 51, p. 1. https://doi.org/10.1134/S1023193516030046

    Article  CAS  Google Scholar 

  12. Kanevskii, L.S., Grafov, B.M., and Astaf’ev, M.G., Dynamics of electrochemical noise of the lithium electrode in aprotic organic electrolytes, Russ. J. Electrochem., 2005, vol. 41, p. 1091. https://doi.org/10.1007/s11175-005-0186-9

    Article  CAS  Google Scholar 

  13. Kanevskii, L.S. and Grafov, B.M., Dynamics of lithium electrode passivation in aprotic organic electrolytes, studied by electrochemical noise method, Russ. J. Electrochem., 2008, vol. 44, p. 570. https://doi.org/10.1134/S1023193508050108

    Article  CAS  Google Scholar 

  14. Kanevskii, L.S., Investigation and diagnostics of lithium power sources by the method of electrochemical noise I. Dynamics of electrochemical noise of a lithium electrode in aprotic organic electrolytes, Elektrokhim. Energetika (in Russian), 2008, vol. 8, p. 92.

  15. Astaf'ev, M.G., Kanevskii, L.S., and Grafov, B.M., Electrochemical noise of a lithium electrode in organic electrolytes: a study by a correlation function method, Russ. J. Electrochem., 2006, vol. 42, p. 523. https://doi.org/10.1134/S1023193506050107

    Article  CAS  Google Scholar 

  16. Astafev, E.A., The instrument for electrochemical noise measurement of chemical power sources, Rev. Sci. Instrum., 2019, vol. 90, #025104. https://doi.org/10.1063/1.5079613

  17. Astafev, E., Electrochemical noise measurement methodologies of chemical power sources, Instrument. Sci. Technol., 2019, vol. 47, p. 233. https://doi.org/10.1080/10739149.2018.1521423

    Article  CAS  Google Scholar 

  18. Martemianov, S., Adiutantov, N., Evdokimov, Y.K., Madier, L., Maillard, F., and Thomas, A., New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries, J. Solid State Electrochem., 2015, vol. 19, p. 2803.

    Article  CAS  Google Scholar 

  19. Astafev, E. and Ukshe, A., Peculiarities of Hardware for Electrochemical Noise Measurement in Chemical Power Sources, IEEE Trans. Instrument. Measurement, 2019, vol. 68, p. 4412. https://doi.org/10.1109/TIM.2018.2889232

    Article  CAS  Google Scholar 

  20. Astafev, E.A., Wide frequency band measurement and analysis of electrochemical noise of Li/MnO2 primary battery, J. Solid State Electrochem., 2019, vol. 23, p. 1705. https://doi.org/10.1007/s10008-019-04274-w

    Article  CAS  Google Scholar 

Download references

Funding

The reported study was funded by the Russian Foundation of Basic Research according to the research project no. 20-03-00951 а, identifier AAAA-A20-120021890174-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Ukshe.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Based on the materials of the 16th International Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, June 27–July 3, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukshe, A.E., Astafev, E.A. Analysis of Lithium Diffusion in the Cathode Material Particles of Primary Lithium–Manganese Cells by the Measuring of Electrochemical Noise and Magnetoresistance Relaxation. Russ J Electrochem 59, 581–588 (2023). https://doi.org/10.1134/S1023193523080098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523080098

Keywords:

Navigation