Skip to main content
Log in

Synthesis and Properties of Organotrialkoxysilane Functionalized Palladium–Cobalt Heterogeneous Catalysts for Oxygen Evolution Reaction

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Despite the widespread use of noble metal nanocatalysts in heterogeneous catalysis, their catalytic efficiency per-noble metal atom is still inadequate. Organotrialkoxysilane mediated formation of Co@Pdnps were made using Co–NTA nanowires as a precursor. Co@Pdnps were synthesized using variable content of organotrialkoxysilane in an N-doped carbon matrix (Co@Pdnps) to control the presence of nanostructured silica after calcination useful in OER and analyzed by XRD, TEM, SEM, XPS, and EDX. Three systems of bimetallic nanocatalysts of composition after calcination: (i) Co@Pdnps1: Si = 4.54%; Pd = 4.36% and Co = 91.10%; (ii) Co@Pdnps2: Si = 2.81%; Pd = 5.83% and Co = 91.36% and (iii) Co@Pdnps3: Si = 0.00, Pd = 9.48, Co = 90.52 are made justifying the impact of nanostructured silica and palladium nano geometry on OER. The presence of nanostructured silica facilitates (a) re-cyclability of nanocatalyst, (ii) significantly improves the palladium nano geometry, (iii) effective interaction of cobalt and palladium components during OER. A nanostructured silica-derived thin film composed of Co@Pdnps produced a very high current density at a low overpotential with a minor Tafel slope of 39 mV dec–1 and a catalyst loading of 3.5 mg cm–2 on the carbon cloth. In the absence of silica, the nanocatalysts are relatively larger with comparatively less current density(19 mA cm–2) as compared to (20.5 mA cm–2) recorded with high silica content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Ling, T., Yan, D.Y., Wang, H., Jiao, Y., Hu, Z., Zheng, Y., Zheng, L., Mao, J., Liu, H., Du, X.W., and Jaroniecm, M., Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering, Nat. Commun., 2017, vol. 8, no. 1, p. 1.

    Article  Google Scholar 

  2. Fabbri, E., Habereder, A., Waltar, K., Kötz, R., and Schmidt, T.J., Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction, Catal. Sci. Technol., 2014, vol. 4, no. 11, p. 3800.

    Article  CAS  Google Scholar 

  3. Viswanathan, V., Hansen, H.A., Rossmeisl, J., Qu, Z.W., Zhu, H., Kroes, G.J., and Norskov, J.K., J. Electroanal. Chem., 2012, vol. 2007, pp. 607–683.

    Google Scholar 

  4. Man, I.C. and Su, H.Y., Calle-Vallejo, F., Hansen, H.A., Martinez, J.I., Inoglu, N.G., Kitchin, J., Jaramillo, T.F., Nørskov, J.K., and Rossmeisl, J., Universality in oxygen evolution electrocatalysis on oxide surfaces, ChemCatChem., 2011, vol. 3, no. 7, p. 1159.

    Article  CAS  Google Scholar 

  5. Gerken, J.B., McAlpin, J.G., Chen, J.Y., Rigsby, M.L., Casey, W.H., Britt, R.D., and Stahl, S.S., Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity, J. Amer. Chem. Soc., 2011, vol. 133, no. 36, p. 14431.

    Article  CAS  Google Scholar 

  6. Jiao, Y., Zheng, Y., Jaroniec, M., and Qiao, S.Z., Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions, Chem. Soc. Rev., 2015, vol. 44, no. 8, p. 2060.

    Article  CAS  PubMed  Google Scholar 

  7. Li, X., Hao, X., Abudula, A., and Guan, G., Nanostructured catalysts for electrochemical water splitting: current state and prospects, J. Mater. Chem. A, 2016, vol. 4, no. 31, pp. 11973–2000.

    Article  CAS  Google Scholar 

  8. Song, F., Bai, L., Moysiadou, A., Lee, S., Hu, C., Liardet, L., and Hu, X., Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance, J. Am. Chem. Soc., 2018, vol. 140, no. 25, p. 7748.

    Article  CAS  PubMed  Google Scholar 

  9. Jin, H., Wang, J., Su, D., Wei, Z., Pang, Z., and Wang, Y., In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution, J. Am. Chem. Soc., 2015, vol. 137, no. 7, p. 2688.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, J., Li, K., Zhong, H.X., Xu, D., Wang, Z.L., Jiang, Z., Wu, Z.J., and Zhang, X.B., Synergistic effect between metal-nitrogen-carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance, Angew. Chem., 2015, vol. 27, no. 36, p. 10676.

    Article  Google Scholar 

  11. Tsutsumi, M., Islam, M.S., Karim, M.R., Rabin, N.N., Ohtani, R., Nakamura, M., Lindoy, L.F., and Hayami, S., Tri-functional OER, HER and ORR electrocatalyst electrodes from in situ metal-nitrogen co-doped oxidized graphite rods, Bull. Chem. Soc. Jpn., 2017, vol. 90, no. 8, p. 950.

    Article  CAS  Google Scholar 

  12. Nishioka, S., Kobayashi, M., Lu, D., Kakihana, M., and Maeda, K., Selective synthesis and photocatalytic oxygen evolution activities of tantalum/nitrogen-codoped anatase, brookite and rutile titanium dioxide, Bull. Chem. Soc. Jpn., 2019, vol. 92, no. 6, p. 1032.

    Article  CAS  Google Scholar 

  13. Matsumoto, K., Akira, O., Campidell, S., and Hayashi, T., Electrocatalytic hydrogen evolution reaction promoted by Co/N/C catalysts with Co-Nx active sites derived from precursors forming N-doped graphene nanoribbons, Bull. Chem. Soc. Jpn., 2021, vol. 94, no. 12.

  14. Pandey, P.C., Singh, R., and Pandey, A.K., Tetrahydrofuran hydroperoxide and 3-aminopropyltrimethoxysilane mediated controlled synthesis of Pd, Pd–Au, Au–Pd nanoparticles: role of palladium nanoparticles on the redox electrochemistry of ferrocene monocarboxylic acid, Electrochim. Acta, 2014, vol. 138, p. 163.

    Article  CAS  Google Scholar 

  15. Pandey, P.C. and Pandey, G., One-pot two-step rapid synthesis of 3-aminopropyltrimethoxysilane-mediated highly catalytic Ag@(PdAu) trimetallic nanoparticles, Catal. Sci. Technol., 2016, vol. 6, no. 11, p. 3911.

    Article  CAS  Google Scholar 

  16. Pandey, P.C. and Singh, R., Controlled synthesis of Pd and Pd–Au nanoparticles: effect of organic amine and silanol groups on morphology and polycrystallinity of nanomaterials, RSC Adv., 2015, vol. 5, no. 15, p. 10964.

    Article  CAS  Google Scholar 

  17. Pandey, P.C. and Shukla, S., Solvent dependent fabrication of bifunctional nanoparticles and nanostructured thin films by self assembly of organosilanes, J. Sol-Gel Sci. Technol., 2018, vol. 86, no. 3, p. 650.

    Article  CAS  Google Scholar 

  18. Pandey, P.C., Mitra, M.D., Pandey, A.K., and Narayan, R.J., MRS Adv., 2021, vol. 6, p. 43.

    Article  CAS  Google Scholar 

  19. Wang, B., Chen, K., Wang, G., Liu, X., Wang, H., and Bai, J., A multidimensional and hierarchical carbon-confined cobalt phosphide nanocomposite as an advanced anode for lithium and sodium storage, Nanoscale, 2019, vol. 11, no. 3, p. 968.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y., An, C., Wang, Y., Huang, Y., Chen, C., Jiao, L., and Yuan, H., Core-shell Co@C catalyzed MgH2: enhanced dehydrogenation properties and its catalytic mechanism, J. Mater. Chem. A, 2014, vol. 2, no. 38, p. 16285.

    Article  CAS  Google Scholar 

  21. Gao, J., Li, Y., Shi, L., Li, J., and Zhang, G., Rational design of hierarchical nanotubes through encapsulating CoSe2 nanoparticles into MoSe2/C composite shells with enhanced lithium and sodium storage performance, ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 24, p. 20635.

    Article  CAS  PubMed  Google Scholar 

  22. Su, J., Yang, Y., Xia, G., Chen, J., Jiang, P., and Chen, Q., Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media, Nat. Commun., 2017, vol. 8, no. 1, p. 1.

    Google Scholar 

  23. Li, C.C. and Zeng, H.C., Cobalt (hcp) nanofibers with pine-tree-leaf hierarchical superstructures, J. Mater. Chem., 2010, vol. 20, no. 41, p. 9187.

    Article  CAS  Google Scholar 

  24. Zheng, F., Yang, Y., and Chen, Q., High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework, Nat. Commun., 2014, vol. 5, no. 1, p. 1-0.

    Article  Google Scholar 

  25. Zheng, F., Yang, Y., and Chen, Q., High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework, Nat. Commun., 2014, vol. 5, no. 1, p. 1-0.

    Article  Google Scholar 

  26. Rajabalee, F.J., The chelates of divalent copper, nickel, zinc, lead, mercury, cobalt and manganese with nitrilotriacetic acid, J. Inorg. Nucl. Chem., 1974, vol. 36, no. 3, p. 557.

    Article  CAS  Google Scholar 

  27. Jiang, J., Liu, Q., Zeng, C., and Ai, L., Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions, J. Mater. Chem. A, 2017, vol. 5, no. 32, p. 16929.

    Article  CAS  Google Scholar 

  28. Guo, C., Li, Y., Liao, W., Liu, Y., Li, Z., Sun, L., Chen, C., Zhang, J., Si, Y., and Li, L., Boosting the oxygen reduction activity of a three-dimensional network Co–N–C electrocatalyst via space-confined control of nitrogen-doping efficiency and the molecular-level coordination effect, J. Mater. Chem. A, 2018, vol. 6, no. 27, p. 13050.

    Article  CAS  Google Scholar 

  29. Kumar, B., Asadi, M., and Pisasale, D., Sinha-Ray, S., Rosen, B.A., Haasch, R., Abiade, J., Yarin, A.L., and Salehi-Khojin, A., Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction, Nat. Commun., 2013, vol. 4, no. 1, p. 1.

    Google Scholar 

  30. Lee, S.W., Yabuuchi, N., Gallant, B.M., Chen, S., Kim, B.-S., Hammond, P.T., and Shao-Horn, Y., Nat. Nanotechnol., 2010, vol. 5, p. 531.

    Article  CAS  PubMed  Google Scholar 

  31. Xie, Y. and Sherwood, P.M., X-ray photoelectron-spectroscopic studies of carbon fiber surfaces. 11. Differences in the surface chemistry and bulk structure of different carbon fibers based on poly (acrylonitrile) and pitch and comparison with various graphite samples, Chem. Mater., 1990, vol. 2, no. 3, p. 293.

    Article  CAS  Google Scholar 

  32. Zhang, K., Wang, C., Bin, D., Wang, J., Yan, B., Shiraishi, Y., and Du, Y., Fabrication of Pd/P nanoparticle networks with high activity for methanol oxidation, Catal. Sci. Technol., 2016, vol. 6, no. 16, p. 6441.

    Article  CAS  Google Scholar 

  33. Khan, S.A., Khan, S.B., and Asiri, A.M., Core–shell cobalt oxide mesoporous silica based efficient electro-catalyst for oxygen evolution, New J. Chem., 2015, vol. 39, no. 7, p. 5561.

    Article  CAS  Google Scholar 

  34. Pandey, P.C., https://youtu.be/Zl-QT574j8Q; https:// www.youtube.com/watch?v=TFw29jP-6nM.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem. C. Pandey.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitra Singh, Singh, K. & Pandey, P.C. Synthesis and Properties of Organotrialkoxysilane Functionalized Palladium–Cobalt Heterogeneous Catalysts for Oxygen Evolution Reaction. Russ J Electrochem 59, 604–615 (2023). https://doi.org/10.1134/S1023193523080074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523080074

Keywords:

Navigation