Skip to main content
Log in

Synthesis and Characterization of MIIN4-Macrocyclic Complexes of Iron and Cobalt and Their Electrochemical Studies

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Due to the unique structural, electronic and electrochemical features, the macrocyclic complexes are recognized as potential models in diverse field of research like electrocatalysis, biological, pharmaceuticals etc. Herein, we prepared MIIN4-macrocyclic complexes (M = FeII and CoII) via condensation of 2,3-diaminopyridine and 2,6-pyridinedicarboxylic acid in presence of metal salts. These synthesized complexes were characterized using multiple spectroscopies. The octahedral geometry was assigned to the complexes on the basis of electronic spectral studies. Further, the electrochemical behavior of these complexes was evaluated using cyclic voltammetry, and the results agreed with the stability of uncommon oxidation states of the corresponding transition metal ion. These fundamental studies will help to concern community to design the efficient macrocyclic models for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Lindoy, L.F., The Chemistry of Macrocyclic Ligand Complexes, Cambridge Univ. Press, 1990.

    Google Scholar 

  2. Kumar, A., Vashistha, V.K., and Das, D.K., Recent development on metal phthalocyanines based materials for energy conversion and storage applications, Coord. Chem. Rev., 2020, vol. 431, p. 213678.

    Article  Google Scholar 

  3. Goedken, V.L., Park, Y.A., Peng, S.M., and Norris, J.M., Synthesis and structural characterization of iron(II) complexes of a new completely conjugated macrocyclic ligand derived from 2,6-diacetylpyridine and hydrazine, J. Am. Chem. Soc., 1974, vol. 96, no. 25, p. 7693.

    Article  CAS  Google Scholar 

  4. Vashistha, V.K., Kumar, A., Tevatia, P., and Das, D.K., Synthesis, characterization, electrochemical and antimicrobial studies of Iron(II) and nickel(II) macrocyclic complexes, Russ. J. Electrochem., 2021, vol. 57, no. 4, p. 348.

    Article  Google Scholar 

  5. Vashistha, V.K. and Kumar, A., Kinetic and biological studies of nickel(II) and copper(II) macrocyclic complexes, Russ. J. Inorg. Chem., 2021, vol. 66, no. 6, p. 834.

    Article  CAS  Google Scholar 

  6. Vashistha, V.K., Kumar, A., Kundi, V.K., and Das, D.K., Synthesis and electrochemical studies of novel isothiocyanato macrocyclic Mn(III) complexes: experimental and theoretical studies, Russ. J. Inorg. Chem., 2021, vol. 66, p. 61.

    Article  CAS  Google Scholar 

  7. Vashistha, V.K. and Kumar, A., Synthesis of Co(II) and Ni(II) ssymmetric tetraazamacrocyclic complexes and their electrochemical and antimicrobial studies, Russ. J. Inorg. Chem., 2020, vol. 65, no. 14, p. 2028.

    Article  CAS  Google Scholar 

  8. Kumar, A., Vashistha, V.K., Ahmed, S., Ali, A., and Das, D.K., Synthesis, characterization, electrochemical and antimicrobial studies of N4-macrocycles of cobalt(II) and nickel(II) metal ions, Anal. Bioanal. Electrochem., 2020, vol. 12, no. 7, p. 922.

    CAS  Google Scholar 

  9. Kumar, A., Vashistha, V.K., Ahmed, S., Ali, A., and Das, D.K., Synthesis, Characterization, electrochemical and antimicrobial studies of N4-macrocycles of cobalt(II) and nickel(II) metal ions, Anal. Bioanal. Electrochem., 2020, vol. 12, no. 7, p. 922.

    CAS  Google Scholar 

  10. Kumar, A., Vashistha, V.K., Tevatia, P., and Singh, R., Electrochemical studies of DNA interaction and antimicrobial activities of MnII, FeIII, CoII and NiII Schiff base tetraazamacrocyclic complexes, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2017, vol. 176, pp. 123–133.

    Article  CAS  Google Scholar 

  11. Chandra, S. and Gupta, K., Chromium(III), manganese(II), iron(III), cobalt(II), nickel(II) and copper(II) complexes with a pentadentate, 15-membered new macrocyclic ligand, Transition Metal Chem., 2002, vol. 27, no. 2, p. 196.

    Article  CAS  Google Scholar 

  12. Drahos, B., Herchel, R., and Travnicek, Z., Structural, magnetic, and redox diversity of first-row transition metal complexes of a pyridine-based macrocycle: well-marked trends supported by theoretical DFT calculations, Inorg. Chem., 2015, vol. 54, no. 7, p. 3352.

    Article  CAS  PubMed  Google Scholar 

  13. Bazanov, M.I., Berezina, N.M., Karimov, D.R., and Berezin, D.B., Electrochemical and electrocatalytic properties of meso-triphenylcorrole and its complexes with Mn(III), Co(III), Cu(III), and Zn(II), Russ. J. Electrochem., 2012, vol. 48, no. 9, p. 905.

    Article  CAS  Google Scholar 

  14. Catalano, A., Sinicropi, M.S., Iacopetta, D., Ceramella, J., Mariconda, A., Rosano, C., Scali, E., Saturnino, C., and Longo, P., A review on the advancements in the field of metal complexes with schiff bases as antiproliferative agents, Appl. Sci., 2021, vol. 11, no. 13, p. 6027.

    Article  CAS  Google Scholar 

  15. Ebosie, N.P., Ogwuegbu, M.O., Onyedika, G.O., and Onwumere, F.C., Biological and analytical applications of Schiff base metal complexes derived from salicylidene-4-aminoantipyrine and its derivatives: a review, J. Iran. Chem. Soc., 2022, vol. 18, pp. 3145–3175.

    Article  Google Scholar 

  16. Ibrahim, F.M. and Abdalhadi, S.M., Performance of Schiff bases metal complexes and their ligand in biological activity: a review, Al-Nahrain J. Sci., 2021, vol. 24, no. 1, pp. 1–10.

    Article  Google Scholar 

  17. Singh, A. and Barman, P., Recent advances in Schiff base ruthenium metal complexes: synthesis and applications, Top. Current Chem., 2021, vol. 379, no. 4, pp.1–71.

    Google Scholar 

  18. Pervaiz, M., Sadiq, S., Sadiq, A., Younas, U., Ashraf, A., Saeed, Z., Zuber, M., and Adnan, A., Azo-Schiff base derivatives of transition metal complexes as antimicrobial agents, Coord. Chem. Rev., 2021, vol. 447, p. 214128.

    Article  CAS  Google Scholar 

  19. Shekhar, S., Khan, A.M., Sharma, S., Sharma, B., and Sarkar, A., Schiff base metallodrugs in antimicrobial and anticancer chemotherapy applications: a comprehensive review, Emergent Mater., 2022, vol. 5, p. 279.

    Article  CAS  Google Scholar 

  20. Drahos, B., Kotek, J., Hermann, P., Lukes, I., and Toth, E., Mn2+ complexes with pyridine-containing 15-membered macrocycles: thermodynamic, kinetic, crystallographic, and 1H/17O relaxation studies, Inorg. Chem., 2010, vol. 49, no. 7, p. 3224.

    Article  CAS  PubMed  Google Scholar 

  21. Abdullah, N.H.S., Ozair, L.N., and Yamin, B.M., A short review on the synthesis of azamacrocyclic ligand: conventional and non-template methods, Malays. J. Anal. Sci., 2021, vol. 25, no. 4, pp. 547–560.

    Google Scholar 

  22. Sarma, M., Chatterjee, T., and Das, S.K., Inorganic-organic hybrid materials based on Co (III) tetra-aza-macrocyclic complexes and Lindqvist type poly-oxo anions: synthesis, characterization and spectroscopy of [CoIII (L)(NO2)2]2[Mo6O19] and [CoIII (L)(NCS)2] 2 [W6O19]·2CH3CN (L= Transdiene), J. Mol. Struct., 2011, vol. 1004, nos. 1–3, p. 31.

    Article  CAS  Google Scholar 

  23. Shanker, K., Rohini, R., Ravinder, V., Reddy, P.M., and Ho, Y.P., Ru (II) complexes of N4 and N2O2 macrocyclic Schiff base ligands: their antibacterial and antifungal studies, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2009, vol. 73, no. 1, p. 205.

    Article  Google Scholar 

  24. Geeta, B., Shravankumar, K., Reddy, P.M., Ravikrishna, E., Sarangapani, M., Reddy, K.K., and Ravinder, V., Binuclear cobalt(II), nickel(II), copper(II) and palladium(II) complexes of a new Schiff-base as ligand: synthesis, structural characterization, and antibacterial activity, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2010, vol. 77, no. 4, p. 911.

    Article  CAS  Google Scholar 

  25. Grioui, N., Halouani, K., Zoulalian, A., and Halouani, F., Thermogravimetric analysis and kinetics modeling of isothermal carbonization of olive wood in inert atmosphere, Thermochim. Acta, 2006, vol. 440, no. 1, p. 23.

    Article  CAS  Google Scholar 

  26. Chandra, S., Gautam, A., and Tyagi, M., Synthesis, structural characterization, and antibacterial studies of a tetradentate macrocyclic ligand and its Co(II), Ni(II), and Cu(II) complexes, Russ. J. Coord. Chem., 2009, vol. 35, no. 1, p. 25.

    Article  CAS  Google Scholar 

  27. Keypour, H., Zeynali, H., Rezaeivala, M., Mohsenzadeh, F., Rudbari, H.A., Bruno, G., and Sadeghpour, A., Synthesis and characterization of macrocyclic and polymeric Schiff base complexes derived from related macrocyclic ligands in the presence of Ni(II) and Cu(II), J. Iran. Chem. Soc., 2015, vol. 12, no. 9, p. 1665.

    Article  CAS  Google Scholar 

  28. Kumar, A., Yasin, G., Vashistha, V.K., Das, D.K., Rehman, M.U., Iqbal, R., Mo, Z., Nguyen, T.A., Slimani, Y., Nazir, M.T., and Zhao, W., Enhancing oxygen reduction reaction performance via CNTs/graphene supported iron protoporphyrin IX: a hybrid nanoarchitecture electrocatalyst, Diamond Relat. Mater., 2021, vol. 113, p. 108272.

    Article  CAS  Google Scholar 

  29. Saban, U. and Ismet, U.H., The synthesis and characterization of single substitute melamine cored Schiff bases and their [Fe(III) and Cr(III)] complexes, J. Inclusion Phenom. Macrocyclic Chem., 2010, vol. 68, p. 165.

    Article  Google Scholar 

  30. Kumar, R. and Johar, R., Structural elucidation and coordination abilities of Co(II) and Mn(II) coordination entities of 2,6,11,15-tetraoxa-9,17-diaza-1,7,10,16-(1,2)-tetrabenzenacyclooctadecaphan-8,17-diene, Spectrochim. Acta A, 2011, vol. 79, p. 1042.

    Article  Google Scholar 

  31. Antal, P., Drahoš, B., Herchel, R., and Trávníček, Z., Structure and magnetism of seven-coordinate FeIII, FeII, CoII and NiII complexes containing a heptadentate 15-membered pyridine-based macrocyclic ligand, Eur. J. Inorg. Chem., 2018, vol. 2018, p. 4286.

    Article  CAS  Google Scholar 

  32. Yu, X. and Zhang, J., Macrocyclic Polyamines: Synthesis and Applications (Wiley, 2017).

    Google Scholar 

  33. Hadjiivanov, K.I., Panayotov, D.A., Mihaylov, M.Y., Ivanova, E.Z., Chakarova, K.K., Andonova, S.M., and Drenchev, N.L., Power of infrared and raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules, Chem. Rev., 2020, 121, no. 3, p. 1286.

    Article  PubMed  Google Scholar 

  34. Radecka-Paryzek, W., Patroniak, V., and Lisowski, J., Metal complexes of polyaza and polyoxaaza Schiff base macrocycles, Coord. Chem. Rev., 2005, vol. 249, p. 2156.

    Article  CAS  Google Scholar 

  35. Vashistha, V.K., Kumar, A., and Singh, R., Synthesis, electrochemical and antimicrobial studies of Me 6‑dibenzotetraazamacrocyclic complexes of Ni(II) and Cu(II) metal ions, Russ. J. Electrochem., 2019, vol. 55, no. 3, p. 161.

    Article  Google Scholar 

  36. Geary, W.J., The use of conductivity measurements in organic solvents for the characterization of coordination compounds, Coord. Chem. Rev., 1971, vol. 7, p. 81; J. Enzyme Inhib. Med. Chem., 2009, vol. 24, no. 3, p. 795.

    Google Scholar 

  37. Varganici, C.D., Marangoci, N., Rosu, L., Barbu-Mic, C., Rosu, D., Pinteala, M., and Simionescu, B.C., Pyrolysis, TGA/DTA–FTIR–MS coupling as analytical tool for confirming inclusion complexes occurrence in supramolecular host-guest architectures, J. Anal. Appl. Pyrol., 2015, vol. 115, p. 132.

    Article  CAS  Google Scholar 

  38. Nejo, A.A., Kolawole, G.A., and Nejo, A.O., Synthesis, characterization, antibacterial, and thermal studies of unsymmetrical Schiff-base complexes of cobalt(II), J. Coord. Chem., 2010, vol. 63, no. 24, p. 4398.

    Article  CAS  Google Scholar 

  39. Saadatkhah, N., Carillo Garcia, A., Ackermann, S., Leclerc, P., Latifi, M., Samih, S., Patience, G.S., and Chaouki, J., Experimental methods in chemical engineering: thermogravimetric analysis—TGA, Can. J. Chem. Eng., 2020, vol. 98, no. 1, p. 34.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to the management of GLA University, Mathura, India for all kinds of infrastructural support in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Das.

Ethics declarations

Authors announce that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashistha, V.K., Sharma, V., Kumar, A. et al. Synthesis and Characterization of MIIN4-Macrocyclic Complexes of Iron and Cobalt and Their Electrochemical Studies. Russ J Electrochem 59, 538–545 (2023). https://doi.org/10.1134/S1023193523070091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523070091

Keywords:

Navigation