Skip to main content
Log in

A Model Describing the Process of the Electrodeposition of Zinc Loose Deposits in Pulsed Current Modes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A phenomenological model describing the change in the structural characteristics of loose zinc deposits obtained in pulsed current modes is presented. Comparison of experimental data on the structural properties of deposits with the results of model calculations indicates the adequacy of the model. To describe the features of the dendritic deposit growth and to determine the duration of the homogeneous structure formation in pulsed modes, the concept of critical thickness is introduced, at which a sharp change in the loose deposit density occurs. The dependence of the zinc deposit critical thickness on the pulse duty ratio under pulsed current modes is determined. The increasing of the pulse duty ratio leads to denser deposits with rounded dendrite shapes and fewer growth points, as compared with the deposit obtained in galvanostatic mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Sharifi, B., Mojtahedi, M., Goodarzi, M., and Vahdati, K.J., Effect of alkaline electrolysis conditions on current efficiency and morphology of zinc powder, Hydrometallurgy, 2009, vol. 99, p. 72.

    Article  CAS  Google Scholar 

  2. Korovin, N.V. and Skundin, A.M. (eds.), Chemical Power Sources: A Handbook (in Russian), Moscow: Moscow Energ. Inst., 2003.

    Google Scholar 

  3. Crompton, T.R., Small Batteries: Primary Cells, London: Macmillan Press., 1982.

    Book  Google Scholar 

  4. Tolstosheeva, S.I., Stepin, S.N., Davydova, M.S., and Vakhin, A.V., The effect of nanoscale zinc powder on the protective properties of tread coatings, Vestnik Kazan. Tekhnol. Univ.(in Russian), 2012, vol. 15, p. 98.

    Google Scholar 

  5. Tanygina, E.D., Ponomareva, M.V., Prusakov, A.V., and Uryadnikov, A.A., Anticorrosive compositions modified with zinc and graphite powder based on refining products of low-grade rapeseed oil, Vestnik Tomsk. Gos. Univ. (in Russian), 2009, vol. 14, p. 100.

    Google Scholar 

  6. Alkatsev, M.I., Cementation Processes in Non-Ferrous Metallurgy (in Russian), Moscow: Metallurgiya, 1981.

    Google Scholar 

  7. Steinfeld, A., Solar thermochemical production of hydrogen—a review, Sol. Energy, 2005, vol. 78, p. 603.

    Article  CAS  Google Scholar 

  8. Villasmil, W., Meier, A., and Steinfeld, A., Dynamic modeling of a solar reactor for zinc oxide thermal dissociation and experimental validation using IR thermography, J. Sol. Energy Eng., 2014, vol. 136, p. 010901.

    Article  Google Scholar 

  9. Bhosale, R.R., Solar hydrogen production via ZnO/Zn based thermochemical water splitting cycle: Effect of partial reduction of ZnO, Int. J. Hydrogen Energy, 2020, vol. 46, p. 4739.

    Article  Google Scholar 

  10. Ullah, S., Badshah, A., Ahmed, F., Raza, R., Altaf, A.A., and Hussain, R., Electrodeposited zinc electrodes for high current Zn/AgO Bipolar Batteries, Int. J. Electrochem. Sci., 2011, p. 3801.

  11. Neikov, O.D., Nabojchenko, S.S., Murashova, I.B., Gopienko, V.G., Frishberg, I.V., and Lotsko, D.V., Handbook of Non-ferrous Metal Powders: Technologies and applications, London, N.Y., Amsterdam: Elsevier, 2009.

    Google Scholar 

  12. Wang, P., Wang, C., Wang, Y., Zhang, S., and Li, W., Effect of pulse reverse electrodeposition parameters on the microstructure of the Ni/NiO composite coating, Int. J. Electrochem. Sci., 2020, vol. 15, p. 241.

    Article  CAS  Google Scholar 

  13. Liu, H., Wang, H., Ying, W., Liu, W., Wang, Y., and Li, Q., Influences of duty cycle and pulse frequency on properties of Ni-SiC nanocomposites fabricated by pulse electrodeposition, Int. J. Electrochem. Sci., 2020, vol. 15, p. 10550.

    Article  Google Scholar 

  14. Xia, F., Li, Q., Ma, C., Zhao, D., and Ma, Z., Design and properties of Ni–TiN/SiC nanocoatings prepared by pulse current electrodeposition, Int. J. Electrochem. Sci., 2020, vol. 15, p. 1813.

    Article  CAS  Google Scholar 

  15. Zhang, X., Shen, S., Howell, P., Cheng, W., Mubeen, S., and Stickney, J., Potential pulse ALD for room temperature fabrication of stoichiometric CdTe nanofilms, J. Electrochem. Soc., 2019, vol. 166, p. H3249.

    Article  CAS  Google Scholar 

  16. del Carmen Aguirre, M. and Urreta, S.E., Effect of an external magnetic field orthogonal to the electrode surface on the electrocrystallization mechanism of Co–Fe films under pulsed applied potential, J. Alloy. Compd., 2021, vol. 878, p. 160347.

    Article  CAS  Google Scholar 

  17. Devendra, B.K., Praveen, B.M., Tripathi, V.S., Nagaraju, D.H., and Nayana, K.O., Pt–Rh alloy catalysts for hydrogen generation developed by direct current/pulse current method, J. Iran. Chem. Soc., 2022, vol. 19, p. 1913.

    Article  CAS  Google Scholar 

  18. Dehestani, M., Sharafi, S., and Khayati, G.R., The effect of pulse current density on the microstructure, magnetic, mechanical, and corrosion properties of high-entropy alloy coating Fe–Co–Ni–Mo–W, achieved through electro co-deposition, Intermetallics, vol. 147, 2022, p. 107610.

    Article  CAS  Google Scholar 

  19. Ramaprakash, M., Mohan, S., and Rajasekaran, N., Pulse and pulse reverse electrodeposition of cubic, tetragonal and its mixed phase of Ni-W alloys for corrosion applications, J. Electrochem. Soc., 2019, vol. 166, p. D145.

    Article  CAS  Google Scholar 

  20. Nikolić, N.D., Branković, G., Maksimović, V.M., Pavlović, M.G., and Popov, K.I., Influence of potential pulse conditions on the formation of honeycomb-like copper electrodes, J. Electroanal. Chem., 2009, vol. 635, p. 111.

    Article  Google Scholar 

  21. Nikolić, N.D., Branković, G., and Popov, K.I., Optimization of electrolytic process of formation of open and porous copper electrodes by the pulsating current (PC) regime, Mater. Chem. and Phys., 2011, vol. 125, p. 587.

    Article  Google Scholar 

  22. Nikolić, N.D., Branković, G., and Pavlović, M.G., Correlate between morphology of powder particles obtained by the different regimes of electrolysis and the quantity of evolved hydrogen, Powder Technol., 2012, vol. 221, p. 271.

    Article  Google Scholar 

  23. Nikolić, N.D. and Branković, G., Effect of parameters of square-wave pulsating current on copper electrodeposition in the hydrogen co-deposition range, Electrochem. Commun., 2010, vol. 12, p. 740.

    Article  Google Scholar 

  24. Karimi Tabar Shafiei, F., Jafarzadeh, K., Madram, A.R., and Nikolić, N.D., A novel route for electrolytic production of very branchy copper dendrites under extreme conditions, J. Electrochem. Soc., 2021, vol. 168, p. 043502.

    Article  Google Scholar 

  25. Ostanina, T.N., Rudoy, V.M., Nikitin, V.S., Darintseva, A.B., and Demakov S.L., Change in the physical characteristics of the dendritic zinc deposits in the stationary and pulsating electrolysis, J. Electroanal. Chem., 2017, vol. 784, p. 13.

    Article  CAS  Google Scholar 

  26. Ostanina, T.N., Rudoi, V.M., Nikitin, V.S., Darintseva, A.B., and Ostanin, N.I., Effect of parameters of pulse electrolysis on concentration changes in the loose zinc deposit and deposit properties, Russ. Chem. Bull. (Int. Ed.), 2017, vol. 66, p. 1433.

  27. Nikitin, V.S., Ostanina, T.N., and Rudoi, V.M., Effect of parameters of pulsed potential mode on concentration changes in the bulk loose zinc deposit and its properties, Russ. J. Electrochem., 2018, vol. 54, p. 665.

    Article  CAS  Google Scholar 

  28. Gamburg, Y.D. and Zangari, G., Theory and Practice of Metal Electrodeposition, New York: Springer Science & Business Media, 2011.

    Book  Google Scholar 

  29. Ostanina, T.N., Rudoi, V.M., Patrushev, A.V., Darintseva, A.B., and Farlenkov, A.S., Modelling the dynamic growth of copper and zinc dendritic deposits under the galvanostatic electrolysis conditions, J. Electroanal. Chem., 2015, vol. 750, p. 9.

    Article  CAS  Google Scholar 

  30. Diggle, J.W., Despić, A.R., and Bockris, J.O’M., The mechanism of the dendritic electrocrystallization of zinc, J. Electrochem. Soc., 1969, vol. 116, p. 1503.

    Article  CAS  Google Scholar 

  31. de Vecchi, D.A., Moskvin, A.V., Petrov, M.L., Reznikov, A.N., Skvortsov, N.K., and Trishin, Yu.G., New Handbook of Chemist and Technologist. Basic Properties of Inorganic, Organic, and Elementoorganic Compounds (in Russian), Saint-Petersburg: Mir i Sem’ya, 2002. p. 348.

  32. Nikitin, V.S., Ostanina, T.N., Kumkov, S.I., Rudoy, V.M., and Ostanin, N.I., Determination of the growth time period of loose zinc deposit using interval analysis methods, Russ. J. Non-Ferrous Met., 2020, vol. 61, p. 540.

    Article  Google Scholar 

Download references

Funding

This work is supported by the Ministry of Sciences and Higher Education of the Russian Federation (the project of the Ural Federal Yeltsin University after the program “Priority-2030.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Nikitin or T. N. Ostanina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, V.S., Ostanina, T.N., Rudoy, V.M. et al. A Model Describing the Process of the Electrodeposition of Zinc Loose Deposits in Pulsed Current Modes. Russ J Electrochem 59, 501–511 (2023). https://doi.org/10.1134/S1023193523070066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523070066

Keywords:

Navigation