Skip to main content
Log in

The Effect of the Working Electrode Material Based on Pt/SnO2(Sb) on the Properties of Hydrogen and Carbon-Monoxide Sensors

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of the platinum content (3–10 wt %) in the Pt/SnO2(Sb)-based working-electrode material on the properties (sensitivity, high-speed performance, recovery time) of solid-state potentiometric gas sensors for hydrogen and carbon monoxide including their simultaneous presence in air is studied. Sensors with 5% Pt demonstrate the best characteristics: the efficient carbon-monoxide detection for its concentration from 0.01 to 1 vol %; no effect of hydrogen present in the CO + air mixture in concentrations comparable with the CO concentration; the shortest relaxation time (~30 s at 1% CO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Park, C.O., Fergus, J.W., Miura, N., Park, J., and Choi, A., Solid-state electrochemical gas sensors, Ionics, 2009, vol. 15, p. 261.

    Article  CAS  Google Scholar 

  2. Ukshe, E. and Leonova, L., Potentiometric hydrogen sensors with proton conducting solid electrolytes, Sov. Electrochem., 1992, vol. 28, p. 1166.

    Google Scholar 

  3. Levchenko, A. V., Ukshe, A.E., and Fedotova, A.A., Kinetics of processes occurring at a H3PW12O40/Pt, H2 interface depending on the platinum content on the electrode, Russ. J. Electrochem., 2011, vol. 47, p. 726.

    Article  CAS  Google Scholar 

  4. Goto, T., Hyodo, T., Ueda, T., Kamada, K., Kaneyasu, K., and Shimizu, Y., CO-sensing Properties of potentiometric gas sensors using an anion-conducting polymer electrolyte and au-loaded metal oxide electrodes, Electrochim. Acta, 2015, vol. 166, p. 232.

    Article  CAS  Google Scholar 

  5. Hyodo, T., Goto, T., Ueda, T., Kaneyasu, K., and Shimizu, Y., Potentiometric carbon monoxide sensors using an anion-conducting polymer electrolyte and Au-loaded SnO2 electrodes, J. Electrochem. Soc., 2016, vol. 163, p. B300.

    Article  CAS  Google Scholar 

  6. Hyodo, T., Takamori, M., Goto, T., Ueda, T., and Shimizu, Y., Potentiometric CO sensors using anion-conducting polymer electrolyte: Effects of the kinds of noble metal-loaded metal oxides as sensing-electrode materials on CO-sensing properties, Sens. Actuators, B, 2019, vol. 287, p. 42.

    Article  CAS  Google Scholar 

  7. Pasierb, P. and Rekas, M., Solid-state potentiometric gas sensors–current status and future trends, J. Solid State Electrochem., 2009, vol. 13, p. 3.

    Article  CAS  Google Scholar 

  8. Rudnitskaya, A., Gamelas, J.A.F., Evtuguin, D.V., and Legin, A., Studies on the redox turnover of polyoxometalates using potentiometric chemical sensors, New J. Chem., 2012, vol. 36, p. 1036.

    Article  CAS  Google Scholar 

  9. Aricò, A.S., Modica, E., Ferrara, I., and Antonucci, V., CO and CO/H2 electrooxidation on carbon supported Pt–Ru catalyst in phosphotungstic acid (H3PW12O40) electrolyte, J. Appl. Electrochem., 1998, vol. 28, p. 881.

    Article  Google Scholar 

  10. Amirinejad, M., Madaeni, S.S., Navarra, M.A., Rafiee, E., and Scrosati, B., Preparation and characterization of phosphotungstic acid-derived salt/Nafion nanocomposite membranes for proton exchange membrane fuel cells, J. Power Sources, 2011, vol. 196, p. 988.

    Article  CAS  Google Scholar 

  11. Treglazov, I., Leonova, L., Dobrovolsky, Y., Ryabov, A., Vakulenko, A., and Vassiliev, S., Electrocatalytic effects in gas sensors based on low-temperature superprotonics, Sens. Actuators, B, 2005, vol. 106, p. 164.

    Article  CAS  Google Scholar 

  12. Vakulenko, A., Dobrovolsky, Y., Leonova, L., Karelin, A., Kolesnikova, A., and Bukun, N., Protonic conductivity of neutral and acidic silicotungstates, Solid State Ionics, 2000, vol. 136–137, p. 285.

    Article  Google Scholar 

  13. Dobrovolsky, Yu.A, Levchenko, A.V., and Leonova, L.S., Electrochemical sensors for the analysis of hydrogen in air, Al’tern. Energ. Ekol., 2008, no. 12, p. 71.

  14. Shmygleva, L.V., Chub, A.V., and Leonova, L.S., Solid-state potentiometric sensors with platinized SnO2(Sb) and calixarene/phosphotungstic acid composite electrolyte selective to CO in hydrogen-air atmosphere, Sens. Actuators, B, 2021, vol. 349, p. 130823.

    Article  CAS  Google Scholar 

  15. Bel’mesov, A.A., Levchenko, A.V., Palankoev, T.A., Leonova, L.S., Ukshe, A.E., Chikin, A.I., and Bukun, N.G., Electrochemical sensors based on platinized Ti1 – xRuxO2, Russ. J. Electrochem., 2013, vol. 49, p. 831.

    Article  Google Scholar 

  16. Shmygleva, L. V., Sanginov, E.A., Kayumov, R.R., Ukshe, A.E., and Dobrovol’skii, Y.A., Effect of the structure of calix[4]arene-para-sulfonic acid on its transport properties, Russ. J. Electrochem., 2015, vol. 51, p. 468.

    Article  CAS  Google Scholar 

  17. Shmygleva, L.V., Pisareva, A.V., Pisarev, R.V., Ukshe, A.E., and Dobrovol’skii, Y.A., Proton conductivity of calix[4]arene-para-sulfonic acids, Russ. J. Electrochem., 2013, vol. 49, p. 801.

    Article  CAS  Google Scholar 

  18. Pisareva, A.V., Pisarev, R.V., Karelin, A.I., Shmygleva, L.V., Antipin, I.S., Konovalov, A.I., Solovieva, S.E., Dobrovolsky, Y.A., and Aldoshin, S.M., Proton conductivity of calix[n]arene-para-sulfonic acids (n = 4, 8), Russ. Chem. Bull., 2012, vol. 61, p. 1892.

    Article  CAS  Google Scholar 

  19. Leonova, L., Shmygleva, L., Ukshe, A., Levchenko, A., Chub, A., and Dobrovolsky, Y., Solid-state hydrogen sensors based on calixarene—12-phosphatotungstic acid composite electrolytes, Sens. Actuators, B, 2016, vol. 230, p. 470.

    Article  CAS  Google Scholar 

  20. Formo, E., Peng, Z., Lee, E., Lu, X., Yang, H., and Xia, Y., Direct oxidation of methanol on Pt nanostructures supported on electrospun nanofibers of anatase, J. Phys. Chem. C, 2008, vol. 112, p. 9970.

    Article  CAS  Google Scholar 

  21. Liu, X., Chen, J., Liu, G., Zhang, L., Zhang, H., and Yi, B., Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts, J. Power Sources, 2010, vol. 195, p. 4098.

    Article  CAS  Google Scholar 

  22. Chhina, H., Campbell, S., and Kesler, O., Ex situ evaluation of tungsten oxide as a catalyst support for PEMFCs, J. Electrochem. Soc., 2007, vol. 154, p. B533.

    Article  CAS  Google Scholar 

  23. Mahajan, S. and Jagtap, S., Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review, Appl. Mater. Today, 2020, vol. 18, p. 100483.

    Article  Google Scholar 

  24. Lin, R., Cao, C., Zhang, H., Huang, H., and Ma, J., Electro-catalytic activity of enhanced CO tolerant cerium-promoted Pt/C catalyst for PEM fuel cell anode, Int. J. Hydrogen Energy, 2012, vol. 37, p. 4648.

    Article  CAS  Google Scholar 

  25. Miura, N., Kanamaru, K., Shimizu, Y., and Yamazoe, N., Use of oxide electrodes for proton-conductor gas sensor, Solid State Ionics, 1990, vol. 40–41, p. 452.

    Article  Google Scholar 

  26. Colomer, M.T. and Jurado, J.R., Structural, microstructural, and electrical transport properties of TiO2–RuO2 ceramic materials obtained by polymeric sol–gel route, Chem. Mater., 2000, vol. 12, p. 923.

    Article  CAS  Google Scholar 

  27. Belmesov, A.A., Baranov, A.A., and Levchenko, A.V., Anodic electrocatalysts for fuel cells based on Pt/ Ti1 ‒ xRuxO2, Russ. J. Electrochem., 2018, vol. 54, p. 493.

    Article  CAS  Google Scholar 

  28. Tkacheva, N.S., Nadkhina, S.E., Levchenko, A.V., Leonova, L.S., and Ukshe, A.E., Effect of annealing temperature of SnO2/Sb2O3 working electrode on CO2 sensors sensitivity, Al’tern. Energ. Ekol., 2011, no. 11, p. 16.

  29. Marikuts, A., Rumyantseva, M., and Gaskov, A., Effect of n-type doping of SnO2 and ZnO on surface sites and gas sensing behaviour, Procedia Eng., 2016, vol. 168, p. 1082.

    Article  CAS  Google Scholar 

  30. Ozouf, G. and Beauger, C., Niobium- and antimony-doped tin dioxide aerogels as new catalyst supports for PEM fuel cells, J. Mater. Sci., 2016, vol. 51, p. 5305.

    Article  CAS  Google Scholar 

  31. Lee, K., Park, I., Cho, Y., Jung, D., Jung, N., Park, H., and Sung, Y., Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells, J. Catal., 2008, vol. 258, p. 143.

    Article  CAS  Google Scholar 

  32. Marikutsa, A.V., Vorob’eva, N.A., Rumyantseva, M.N., and Gas’kov, A.M., Active sites on the surface of nanocrystalline semiconductor oxides ZnO and SnO2 and gas sensitivity, Russ. Chem. Bull., 2017, vol. 66, p. 1728.

    Article  CAS  Google Scholar 

  33. Maizelis, A. and Bairachniy, B., Electrochemical formation of multilayer SnO2–SbxOy coating in complex electrolyte, Nanoscale Res. Lett., 2017, vol. 12.

  34. Fu, Q., Colmenares Rausseo, L.C., Martinez, U., Dahl, P.I., García Lastra, J.M., Vullum, P.E., Svenum, I.H., and Vegge, T., Effect of Sb segregation on conductance and catalytic activity at Pt/Sb-doped SnO2 interface: a synergetic computational and experimental study, ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 27782.

    Article  CAS  PubMed  Google Scholar 

  35. Frolova, L., Lyskov, N., and Dobrovolsky, Y., Nanostructured Pt/SnO2–SbOx–RuO2 electrocatalysts for direct alcohol fuel cells, Solid State Ionics, 2012, vol. 225, p. 92.

    Article  CAS  Google Scholar 

  36. Vakulenko, A.M., Leonova, L.S., and Ukshe, E.A., The influence of carbon–monoxide on the electric–potential of a platinum ammonium 12-phosphotungstate contact, Russ. Electrochem., 1993, vol. 29, p. 1310.

    Google Scholar 

  37. Hyodo, T., Goto, T., Takamori, M., Ueda, T., and Shimizu, Y., Effects of Pt loading onto SnO2 electrodes on CO-sensing properties and mechanism of potentiometric gas sensors utilizing an anion-conducting polymer electrolyte, Sens. Actuators, B, 2019, vol. 300, p. 127041.

    Article  CAS  Google Scholar 

  38. Wang, Q., Bao, L., Cao, Z., Li, C., Li, X., Liu, F., Sun, P., and Lu, G., Microwave-assisted hydrothermal synthesis of Pt/SnO2 gas sensor for CO detection, Chin. Chem. Lett., 2020, vol. 31, p. 2029.

    Article  CAS  Google Scholar 

  39. Matijević, E. and Kerker, M., Influence of Electrolytes on the Light Scattering of Inorganic Compounds. Light Scattering of Phosphotungstic Acids, J. Am. Chem. Soc., 1959, vol. 81, p. 1307.

    Article  Google Scholar 

  40. Baranov, A., Leonova, L., Belmesov, A., Domashnev, D., Levchenko, A., Shmygleva, L., Karelin, A., Dremova, N., and Dobrovolsky, Y., Acidic cesium salts of phosphotungstic acid: Morphology, water content and ionic conductivity, Solid State Ionics, 2022, vol. 379, p. 115902.

    Article  CAS  Google Scholar 

  41. Scharff, J.P., Mahjoubi, M., and Perrin, R., Synthesis and acid-base properties of Calix4, Calix6 and Calix8arene p-sulfonic acids, New J. Chem., 1991, vol. 15, p. 883.

    CAS  Google Scholar 

  42. Ukshe, A. and Leonova, L., Relaxation of the potential of superionic systems sensible to hydrogen concentration, Solid State Ionics, 1996, vol. 86–88, p. 1379.

    Article  Google Scholar 

  43. Fouletier, J., Seinera, H., and Kleitz, M., Measurement and regulation of oxygen content in selected gases using solid electrolyte cells. I. Discontinuous use of gauges, J. Appl. Electrochem., 1974, vol. 4, p. 305.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out in the frames of the state project no. АААА-А19-119061890019-50. It was partly performed using the equipment of the Center on the Technologies of New and Mobile Power Sources at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Shmygleva.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated by T. Safonova

Based on the materials of the 16th International Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka, June 27–July 3, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmygleva, L.V., Starkov, A.V. & Leonova, L.S. The Effect of the Working Electrode Material Based on Pt/SnO2(Sb) on the Properties of Hydrogen and Carbon-Monoxide Sensors. Russ J Electrochem 59, 441–448 (2023). https://doi.org/10.1134/S102319352306006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319352306006X

Keywords:

Navigation