Skip to main content
Log in

Electrochemical Oxygen Generator with Solid-Molten Bi2O3–B2O3 Electrolyte and Porous Bi3Ru3O11–Bi2O3 Electrodes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A symmetrical electrochemical cell Bi3Ru3O11−35 wt % Bi2O3 porous electrode|Bi2O3−0.2 wt % B2O3 solid-molten electrolyte|Bi3Ru3O11−35 wt % Bi2O3 porous electrode is developed. The values of the cell ohmic and polarization resistances, Faraday efficiency, and oxygen permeation flux of the cell were measured using impedance spectroscopy and Coulomb volumetric technique at 740°C. These values are 0.046 and 0.077 Ω cm2, 97%, and 5×10–7 mol cm–2 s–1, respectively. The effect of wetting of the porous electrode surface on the polarization resistance was analyzed. The Bi3Ru3O11−35 wt % Bi2O3 and solid-molten Bi2O3−0.2 wt % B2O3 composites have a great potential to be used as the electrode and electrolyte materials in electrochemical oxygen generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Akulinin, E., Golubyatnikov, O., Dvoretsky, D., and Dvoretsky, S., Optimization and analysis of pressure swing adsorption process for oxygen production from air under uncertainty, Chem. Ind. Chem. Eng. Q., 2020, vol. 26, no. 1, p. 89.

    Article  CAS  Google Scholar 

  2. Santos, J.C., Cruz, P., Regala, T., Magalhaes, F.D., and Mendes, A., High-purity oxygen production by pressure swing adsorption, Ind. Eng. Chem. Res., 2007, vol. 46, no. 2, p. 591.

    Article  CAS  Google Scholar 

  3. Allam, R. J., Improved oxygen production technologies, Energy Procedia, 2009, vol. 1, no. 1, p. 461.

    Article  CAS  Google Scholar 

  4. Wang, M., Nowicki, K.M., and Irvine, J.T.S., A Novel Solid Oxide Electrochemical Oxygen Pump for Oxygen Therapy, J. Electrochem. Soc., 2022, vol. 169, no. 6, p. 064509.

    Article  CAS  Google Scholar 

  5. Tsai, J.T., Wang, S.F., Hsu, Y.F., and Jasinski, P., Effects of La0.8Sr0.2MnO3 and Ag electrodes on bismuth-oxide-based low-temperature solid electrolyte oxygen generators, Ceram. Int., 2022, vol. 48, no. 1, p. 1132.

    Article  CAS  Google Scholar 

  6. Wang, S.F., Chen, Y.W., and Hsu, Y.F., Honeycomb oxygen-generator with doped bismuth-oxide-based electrolyte and Ag electrode, J. Electroceramics, 2020, vol. 44, no. 1, p. 104.

    Article  CAS  Google Scholar 

  7. Chen, Y.W., Liu, Y.-X., Wang, S.F., and Devasenathipathy, R., Characteristics of Honeycomb-Type Oxygen Generator with Electrolyte Based on Doped Bismuth Oxide, J. Electron. Mater., 2018, vol. 47, no. 7, p. 3639.

    Article  CAS  Google Scholar 

  8. Dyer, P.N., Richards, R.E., Russek, S.L., and Taylor, D.M., Ion transport membrane technology for oxygen separation and syngas production, Solid State Ion., 2000, vol. 134, no. 1-2, p. 21.

    Article  CAS  Google Scholar 

  9. Badwal, S.P.S. and Ciacchi, F.T., Ceramic membrane technologies for oxygen separation, Adv. Mater., 2001, vol. 13, nos. 12–13, p. 993.

    Article  CAS  Google Scholar 

  10. Jiang, D., Bu, X., Sun, B., Lin, G., Zhao, H., Cai, Y., and Fang, L., Experimental study on ceramic membrane technology for onboard oxygen generation, Chinese J. Aeronaut., 2016, vol. 29, no. 4, p. 863.

    Article  Google Scholar 

  11. Meixner, D.L., Brengel, D.D., Henderson, B.T., Abrardo, J.M., Wilson, M.A., Taylor, D.M., and Cutler, R.A., Electrochemical oxygen separation using solid electrolyte ion transport membranes, J. Electrochem. Soc., 2002, vol. 149, no. 9, p. D132.

    Article  CAS  Google Scholar 

  12. Zhou, W., Shao, Z., Ran, R., Chen, Z., Zeng, P., Gu, H, Jin W., and Xu, N., High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane, Electrochim. Acta, 2007, vol. 52, no. 22, p. 6297.

    Article  CAS  Google Scholar 

  13. Pham, A.Q. and Glass, R.S., Oxygen pumping characteristics of yttria-stabilized-zirconia, Electrochim. Acta, 1998, vol. 43, no. 18, p. 2699.

    Article  CAS  Google Scholar 

  14. Spirin, A.V. Nikonov, A.V., Lipilin, A.S., Paranin, S.N., Ivanov, V.V., Khrustov, V.R., Valentsev A.V., and Krutikov, V.I., Electrochemical cell with solid oxide electrolyte and oxygen pump thereof, Russ. J. Electrochem., 2011, vol. 47, p. 569.

    Article  CAS  Google Scholar 

  15. Yuan, D. and Kröger, F.A., Stabilized zirconia as an oxygen pump, J. Electrochem. Soc., 1969, vol. 116, no. 5, p. 594.

    Article  CAS  Google Scholar 

  16. Park, J.Y. and Wachsman, E.D., Lower temperature electrolytic reduction of CO2 to O2 and CO with high-conductivity solid oxide bilayer electrolytes, J. Electrochem. Soc., 2005, vol. 152, no. 8, p. A1654.

    Article  CAS  Google Scholar 

  17. Hong, T., Fang, S., Zhao, M., Chen, F., Zhang, H., Wang, S., and Brinkman, K.S., An intermediate-temperature oxygen transport membrane based on rare-earth doped Bismuth Oxide Dy0.08W0.04Bi0.88O2 – δ, J. Electrochem. Soc., 2017, vol. 164, no. 4, p. F347.

    Article  CAS  Google Scholar 

  18. Inaba, H. and Tagawa, H., Ceria-based solid electrolytes, Solid State Ion., 1996, vol. 83, no. 1–2, p. 1.

    Article  CAS  Google Scholar 

  19. Sammes, N.M., Tompsett, G.A., Näfe, H., and Aldinger, F., Bismuth based oxide electrolytes–structure and ionic conductivity, J. Eur. Ceram. Soc., 1999, vol. 19, no. 10, p. 1801.

    Article  CAS  Google Scholar 

  20. Zhuk, P.P., Vecher, A.A., and Samokhval, V.V., Oxygen conductors based on bismuth oxide, Vestnik B. Gos. Univ., Ser. 2 (in Russian), 1984, no. 1, p. 8.

  21. Belousov, V.V. and Fedorov, S.V., A highly conductive electrolyte for molten oxide fuel cells, Chem. Commun., 2017, vol. 53, no. 3, p. 565.

    Article  CAS  Google Scholar 

  22. Levin, E.M. and McDaniel, C.L., The System Bi2O3–B2O3, J. Amer. Ceram. Soc., 1962, vol. 45, no. 8, p. 355.

    Article  CAS  Google Scholar 

  23. Esposito, V., Luong, B.H., Di Bartolomeo, E., Wachsman, E.D., and Traversa, E., Applicability of Bi2Ru2O7 pyrochlore electrodes for ESB and BIMEVOX electrolytes, J. Electrochem. Soc., 2006, vol. 153, no. 12, p. A2232.

    Article  CAS  Google Scholar 

  24. Jaiswal, A., Hu, C.T., and Wachsman, E.D., Bismuth ruthenate-stabilized bismuth oxide composite cathodes for IT-SOFC, J. Electrochem. Soc., 2007, vol. 154, no. 10, p. B1088.

    Article  CAS  Google Scholar 

Download references

Funding

This work is carried out in frames of the Baykov Institute of Metallurgy and Materials Science State contract no. 075-00715-22-00. The scanning electron microscopy measurements were carried out by V.V. Artemov in frames of the Federal Research Center of Crystallography and Photonics State contract, with the using of equipment from its core facilities center, supported by the Ministry of Sciences and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Dergacheva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Based on the materials of the 16th International Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka, June 27–July 7, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dergacheva, P.E., Fedorov, S.V., Belousov, V.V. et al. Electrochemical Oxygen Generator with Solid-Molten Bi2O3–B2O3 Electrolyte and Porous Bi3Ru3O11–Bi2O3 Electrodes. Russ J Electrochem 59, 466–472 (2023). https://doi.org/10.1134/S1023193523060034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523060034

Keywords:

Navigation