Skip to main content
Log in

MOF(ZB)/Potassium Citrate-Derived Porous Carbon Composite and Its Electrochemical Properties

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) are of great interest material due to its well-defined pores, large surface areas and abundant coordinatable structures. Herein, a {[Zn(BTC)]·2H2O}n·MOF (ZB) (BTC = 1,3,5-Benzenetricarboxylic acid) was synthesized via high-temperature hydrothermal method, then direct carbonization of the combination of {[Zn(BTC)]·2H2O}n·MOF/potassium citrate with different mass ratios a porous carbon composite materials (ZBPC-T-A) was obtained (P refers potassium citrate, C refers porous carbon, T refers the carbonization temperature, and A refers the mass ratio of ZB crystals to potassium citrate). The ZBPC-800-1:5 with mesoporous structure shows a high specific surface area of 1592 ± 36 m2 g–1. To further illustrate the properties of ZBPCs, the MOF-derived porous carbon materials ZBPCs was applied as electrode material for supercapacitor, the results indicate the excellent electrochemical properties, stable multiplicity and cycling performance of ZBPCs. The specific capacitances were 157 ± 3 F g–1 for ZBC-800 and 201 ± 2 F g–1 for ZBPC-800-1:5 at a current density of 1.0 A g–1, respectively. The specific capacitance decay rates were 22.39% for ZBC-800 and 21.90% for ZBPC-800-1:5 when the current density was increased from 1.0 to 10.0 A g–1, respectively. After 5000 cycles, the capacitance retention rate was still 90.41% for ZBPC-800-1:5 at a current density of 1.0 A g–1. The experiments show that the porous carbon composite materials can be used for energy storage, and it provides a new way to prepare porous carbon composite materials derived from MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Isaeva, V.I. and Kustov, L.M., The application of metal-organic frameworks in catalysis, Pet. Chem., 2010, vol. 50, p. 167.

    Article  Google Scholar 

  2. Xu, Y.X., Li, Q., Xue, H.G., and Pang, H., Metal-organic frameworks for direct electrochemical applications, Coord. Chem. Rev., 2018, vol. 376, p. 292.

    Article  CAS  Google Scholar 

  3. Dubey, R. and Guruviah, V., Review of carbon-based electrode materials for supercapacitor energy storage, Ionics, 2019, vol. 25, p. 1419.

    Article  CAS  Google Scholar 

  4. Najib, S. and Erdem, E., Current progress achieved in novel materials for supercapacitor electrodes: mini review, Nanoscale Adv., 2019, vol. 1, p. 2817.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tiwari, A.P., Mukhiya, T., Muthurasu, A., Chhetri, K., Lee, M., Dahal, B., Lohani, P.C., and Kim, H.-Y., A review of electrospun carbon nanofiber-based negative electrode materials for supercapacitors, Electrochemistry, 2021, vol. 2, p. 236.

    CAS  Google Scholar 

  6. Borchardt, L., Zhu, Q.L., Casco, M.E., Berger, R., Zhuang, X.D., Kaskel, S., Feng, X.L., and Xu, Q., Toward a molecular design of porous carbon materials, Mater. Today, 2017, vol. 20, p. 592.

    Article  CAS  Google Scholar 

  7. Liu, W., Shao, Q., Ji, G., Liang, X., Cheng, Y., Quan, B., and Du, Y., Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber, Chem. Eng. J., 2017, vol. 313, p. 734.

    Article  CAS  Google Scholar 

  8. Kim, D.K., Kim, N.D., Park, S.K., Seong, K.D., Hwang, M., You, N.H., and Piao, Y.Z., Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors, J. Power Sources, 2018, vol. 380, p. 55.

    Article  CAS  Google Scholar 

  9. Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., and Pastré, J., Metal-organic frameworks-prospective industrial applications, J. Mater. Chem., 2006, vol. 16, p. 626.

    Article  CAS  Google Scholar 

  10. Tang, J. and Yamauchi, Y., Carbon materials: MOF morphologies in control, Nat. Chem., 2016, vol. 8, p. 638.

    Article  CAS  PubMed  Google Scholar 

  11. Han, T., Park, M.-S., Kim, J., Kim, J.H., and Kim, K., The smallest quaternary ammonium salts with ether groups for high-performance electrochemical double layer capacitors, Chem. Sci., 2016, vol. 7, p. 1791.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang, D.-e. and Wu, J., Microscopic insights into the electrochemical behavior of nonaqueous electrolytes in electric double-layer capacitors, J. Phys. Chem. Lett., 2013, vol. 4, p. 1260.

    Article  CAS  PubMed  Google Scholar 

  13. Huang, J., Sumpter, B.G., and Meunier, V., A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes, Eur. J. Chem., 2008, vol. 14, p. 6614.

    Article  CAS  Google Scholar 

  14. Gu, W.T. and Yushin, G., Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene, Wiley Interdiscip. Rev.: Energy Environ., 2014, vol. 3, p. 424.

    CAS  Google Scholar 

  15. Wang, Q., Yan, J., and Fan, Z.J., Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities, Energy Environ. Sci., 2016, vol. 9, p. 729.

    Article  CAS  Google Scholar 

  16. Salunkhe, R.R., Kamachi, Y., Torad, N.L., Hwang, S.M., Sun, Z.Q., Dou, S.X., Kim, J.H., and Yamauchi, Y., Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons, J. Mater. Chem. A, 2014, vol. 2, p. 19848.

    Article  CAS  Google Scholar 

  17. Cao, X.M., Sun, Z.J., Zhao, S.Y., Wang, B., and Han, Z.B., MOF-derived sponge-like hierarchical porous carbon for flexible all-solid-state supercapacitors, Mater. Chem. Front., 2018, vol. 2, p. 1692.

    Article  CAS  Google Scholar 

  18. Huang, X.Q., Chen, Y.F., Lin, Z.G., Ren, X.Q., Song, Y., Xu, Z.Z., Dong, X.M., Li, X.G., Hu, C.W., and Wang, B., Zn-BTC MOFs with active metal sites synthesized via a structure-directing approach for highly efficient carbon conversion, Chem. Commun., 2014, vol. 50, p. 2624.

    Article  CAS  Google Scholar 

  19. Sivasankar, K., Pal, S., Thiruppathi, M., and Lin, C.H., Carbonization and preparation of nitrogen-doped porous carbon materials from Zn-MOF and its applications, Materials, 2020, vol. 13, p. 264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, J.F. and Liu, Z.H., Two interpenetrating 3D MOFs constructed by bis(imidazole) and V-shape carboxylate co-ligands: synthesis, structure, gas adsorption and photoluminescent properties, J. Coord. Chem., 2016, vol. 69, p. 2553.

    Article  CAS  Google Scholar 

  21. Cendrowski, K., Skumial, P., Spera, P., and Mijowska, E., Thermally induced formation of zinc oxide nanostructures with tailoring morphology during metal organic framework (MOF-5) carbonization process, Mater. Des., 2016, vol. 110, p. 740.

    Article  CAS  Google Scholar 

  22. Krishna, R., Wade, J., Jones, A.N., Lasithiotakis, M., Mummery, P.M., and Marsden, B.J., An understanding of lattice strain, defects and disorder in nuclear graphite, Carbon, 2017, vol. 124, p. 314.

    Article  CAS  Google Scholar 

  23. Lou, Z.C., Li, R., Liu, J., Wang, Q.Y., Zhang, Y., and Li, Y.J., Used dye adsorbent derived N-doped magnetic carbon foam with enhanced electromagnetic wave absorption performance, J. Alloys Compd., 2021, vol. 854, p. 157286.

    Article  CAS  Google Scholar 

  24. Tarimo, D.J., Oyedotun, K.O., Mirghni, A.A., and Manyala, N., Sulphur-reduced graphene oxide composite with improved electrochemical performance for supercapacitor applications, Int. J. Hydrogen Energy, 2020, vol. 45, p. 13189.

    Article  CAS  Google Scholar 

  25. Goldie, S.J., Bush, S., Cumming, J.A., and Coleman, K.S., A statistical approach to Raman analysis of graphene-related materials: implications for quality control, ACS Appl. Nano Mater., 2020, vol. 3, p. 11229.

    Article  CAS  Google Scholar 

  26. Cheng, B.H., Zeng, F.X., Chen, W.J., Cheng, H.Y., Zeng, R.J., and Jiang, H., Nontemplating porous carbon material from polyphosphamide resin for supercapacitors, iScience, 2019, vol. 12, p. 204.

  27. Muttakin, M., Mitra, S., Thu, K., Ito, K., and Saha, B.B., Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms, Int. J. Heat Mass Transfer, 2018, vol. 122, p. 795.

    Article  CAS  Google Scholar 

  28. Sevilla, M. and Fuertes, A.B., Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors, ACS Nano, 2014, vol. 8, p. 5069.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Q., Zhou, M., Zhang, Y., Liu, M., Xiong, W., and Liu, S., Large surface area porous carbon materials synthesized by direct carbonization of banana peel and citrate salts for use as high-performance supercapacitors, J. Mater. Sci.: Mater. Electron., 2018, vol. 29, p. 4294.

    CAS  Google Scholar 

  30. Baer, D.R., Artyushkova, K., Brundle, C.R., Castle, J.E., Engelhard, M.H., Gaskell, K.J., Grant, J.T., Haasch, R.T., Linford, M.R., Powell, C.J., Shard, A.G., Sherwood, P.M.A., and Smentkowski, V.S., Practical guides for X-ray photoelectron spectroscopy: first steps in planning, conducting, and reporting XPS measurements, J. Vac. Sci. Technol. A, 2019, vol. 37, p. 031401.

    Article  Google Scholar 

  31. Kim, T., Tiwari, A.P., Chhetri, K., Ojha, G.P., Kim, H., Chae, S.-H., Dahal, B., Lee, B.M., Mukhiya, T., and Kim, H.Y., Phytic acid controlled in situ synthesis of amorphous cobalt phosphate/carbon composite as anode materials with a high mass loading for symmetrical supercapacitor: amorphization of the electrode to boost the energy density, Nanoscale Adv., 2020, vol. 2, p. 4918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, H., Prasad Tiwari, A., Mukhiya, T., and Kim, H.Y., Temperature-controlled in situ synthesized carbon nanotube-protected vanadium phosphate particle-anchored electrospun carbon nanofibers for high energy density symmetric supercapacitors, J. Colloid. Interface Sci., 2021, vol. 600, p. 740.

    Article  CAS  PubMed  Google Scholar 

  33. Gu, Y., Miao, L., Yin, Y., Liu, M., Gan, L., and Li, L., Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors, Chin. Chem. Lett., 2021, vol. 32, p. 1491.

    Article  CAS  Google Scholar 

  34. Li, Q., Dai, Z., Wu, J., Liu, W., Di, T., Jiang, R., Zheng, X., Wang, W., Ji, X., Li, P., Xu, Z., Qu, X., Xu, Z., and Zhou, J., Fabrication of ordered macro-microporous single-crystalline MOF and its derivative carbon material for supercapacitor, Adv. Energy Mater., 2020, vol. 10, p. 1903750.

    Article  CAS  Google Scholar 

  35. Wang, B., Li, D., Tang, M., Ma, H., Gui, Y., Tian, X., Quan, F., Song, X., and Xia, Y., Alginate-based hierarchical porous carbon aerogel for high-performance supercapacitors, J. Alloys Compd., 2018, vol. 749, p. 517.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partially supported by funding from the National Nature Science Foundation of China (nos. 22166023 and 21666018) and Gansu Province University Fundamental Research Funds (no. 056002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianqiang Zhang or Heming Luo.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitao Wang, Zhang, C., Wu, L. et al. MOF(ZB)/Potassium Citrate-Derived Porous Carbon Composite and Its Electrochemical Properties. Russ J Electrochem 59, 299–312 (2023). https://doi.org/10.1134/S1023193523040134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523040134

Keywords:

Navigation