Skip to main content
Log in

Comparing the Effects of Mechanical Activation and Fusible Additives on the Ionic Conductivity of Li1.3Al0.3Ti1.7(PO4)3

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract—The effects of mechanical activation in a planetary mill and the addition of fusible additives on the conduction properties of the Li1.3Al0.3Ti1.7(PO4)3 (LATP) solid electrolyte with the NASICON structure are compared. According to the results of impedance measurements, the mechanical activation increases the total conductivity of this material from 0.57 × 10–4 to 1.20 × 10–4 S cm–1, whereas the introduction of 5 wt % of fusible additives LiPO3 and Li2B4O7 increases the conductivity to 1.53 × 10–4 and 1.50 × 10–4 S cm–1, respectively. The electronic conductivity of samples does not exceed 10–9–10–8 S cm–1. According to the temperature dependence of the conductivity, the LATP sample containing Li2B4O7 (5 wt %) demonstrates the lowest activation energy equal to 0.29 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004, vol. 104, p. 4303.

    Article  CAS  PubMed  Google Scholar 

  2. Choi, N.S., Chen, Z., Freunberger, S.A., Ji, X., Sun, Y.K., Amine, K., Yushin, G., Nazar, L.F., Cho, J., and Bruce, P.G., Challenges facing lithium batteries and electrical double-layer capacitors, Angew. Chem., Int. Ed., 2012, vol. 51, p. 9994.

    Article  CAS  Google Scholar 

  3. Tan, D.H.S., Banerjee, A., Chen, Z., and Meng, Y.S., From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries, Nat. Nanotechnol., 2021, vol. 15, p. 170.

    Article  Google Scholar 

  4. Kosova, N.V., Devyatkina, E.T., Stepanov, A.P., and Buzlukov, A.L., Lithium conductivity and lithium diffusion in NASICON-type Li1 + xTi2 – xAlx(PO4)3 (x = 0; 0.3) prepared by mechanical activation, Ionics, 2008, vol. 14, p. 303.

    Article  CAS  Google Scholar 

  5. Kobayashi, Yo., Takeuchi, T., Tabuchi, M., Ado, K., and Kageyama, H., Densification of LiTi2 (PO4)3-based solid electrolytes by spark-plasma-sintering, J. Power Sources, 1999, vol. 81–82, p. 853.

    Article  Google Scholar 

  6. Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N., and Adachi, G., Ionic conductivity of solid electrolytes based on lithium titanium phosphate, J. Electrochem. Soc., 1990, vol. 137, p. 1023.

    Article  CAS  Google Scholar 

  7. Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N., and Adachi, G., Ionic conductivity and sinterability of lithium titanium phosphate system, Solid State Ionics, 1990, vol. 40/41, p. 38.

    Article  Google Scholar 

  8. Arbi, K., Lazarraga, M.G., Ben Hassen Chehimi, D., Ayadi-Trabelsi, M., Rojo, J.M., and Sanz, J., Lithium mobility in Li1.2Ti1.8R0.2(PO4)3 compounds (R = Al, Ga, Sc, In) as followed by NMR and impedance spectroscopy, Chem. Mater., 2004, vol. 16, p. 255.

    Article  CAS  Google Scholar 

  9. Dias, J.A., Santagneli, S.H., and Messaddeq, Y., Methods for lithium ion NASICON preparation: From solid-state synthesis to highly conductive glass-ceramics, J. Phys. Chem. C, 2020, vol. 124, p. 26518.

    Article  CAS  Google Scholar 

  10. Xiao, W., Wang, J., Fan, L., Zhang, J., and Li, X., Recent advances in Li1 + xAlxTi2 – x(PO4)3 solid-state electrolyte for safe lithium batteries, Energy Storage Mater., 2019, vol. 19, p. 379.

    Article  Google Scholar 

  11. Bai, F., Kakimoto, K., Shang, X., Mori, D., Taminato, S., Matsumoto, M., Takeda, Y., Yamamoto, O., Minami, H., Izumi, H., and Imanishi, N., Synthesis of NASICON type Li1.4Al0.4Ge0.2Ti1.4(PO4)3 solid electrolyte by rheological phase method, J. Asian Ceram. Soc., 2020, vol. 8, p. 476.

    Article  Google Scholar 

  12. Ming, X., Xin, W., Li, H., Zhang, Y.H., Xu, M.F., and He, Z.Q., Synthesis of Li1.3Al0.3Ti1.7(PO4)3 by sol–gel technique, Mater. Lett., 2004, vol. 58, p. 1227.

    Article  Google Scholar 

  13. Bucharsky, E.C., Schell, K.G., Hintennach, A., and Hoffmann, M.J., Preparation and characterization of sol–gel derived high lithium ion conductive NZP-type ceramics Li1 + xAlxTi2 – x(PO4)3, Solid State Ionics, 2015, vol. 274, p. 77.

    Article  CAS  Google Scholar 

  14. Schroeder, M., Glatthaar, S., and Binder, J.R., Influence of spray granulation on the properties of wet chemically synthesized Li1.3Ti1.7Al0.3(PO4)3 (LATP) powders, Solid State Ionics, 2011, vol. 201, p. 49.

    Article  CAS  Google Scholar 

  15. Kunshina, G.B., Gromov, O.G., Lokshin, E.P., and Kalinnikov, V.T., Sol–gel synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte, Russ. J. Inorg. Chem., 2014, vol. 59, p. 424.

    Article  CAS  Google Scholar 

  16. Xu, X., Wen, Z., Yang, X., Zhang, J., and Gu, Z., High lithium ion conductivity glass-ceramics in Li2O–Al2O3–TiO2–P2O5 from nanoscaled glassy powders by mechanical milling, Solid State Ionics, 2006, vol. 177, p. 2611.

    Article  CAS  Google Scholar 

  17. Fu, J., Superionic conductivity of glass-ceramics in the system Li2O–Al2O3–TiO2–P2O5, Solid State Ionics, 1997, vol. 96, p. 195.

    Article  CAS  Google Scholar 

  18. Zhang, M., Liu, J., and He, W., Preparation, characterization and conductivity studies of Li1.3M0.3Ti1.7(PO4)3 (M = Al, Cr and Fe) glass–ceramics, Adv. Mater. Res., 2013, vol. 602-604, p. 548.

    Article  CAS  Google Scholar 

  19. Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N., and Adachi, G., Ionic conductivity of the lithium titanium phosphate (Lil + xMxTi2 – x(PO4)3, M = AI, Sc, Y, and La) systems, J. Electrochem. Soc., 1989, vol. 136, p. 590.

    Article  CAS  Google Scholar 

  20. German, R.M., Suri, P., and Park, S.J., Review: liquid phase sintering, J. Mater. Sci., 2009, vol. 44, p. 1.

    Article  CAS  Google Scholar 

  21. Kozawa, T., Combined wet milling and heat treatment in water vapor for producing amorphous to crystalline ultrafine Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte particles, RSC Adv., 2021, vol. 11, p. 14796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kunshina, G.B., Shcherbina, O.B, and Bocharova, I.V., Conductivity and mechanical properties of lithium-conducting ceramic solid electrolytes with NASICON structure, Russ. J. Electrochem., 2021, no. 57, p. 953.

  23. He, S. and Xu, Y., Hydrothermal-assisted solid-state reaction synthesis of high ionic conductivity Li1 + xAlxTi2 – x(PO4)3 ceramic solid electrolytes: The effect of Al3+ doping content, Solid State Ionics, 2019, vol. 343, p. 115078.

    Article  CAS  Google Scholar 

  24. Xiao, W., Wang, J., Fan, L., Zhang, J., and Li, X., Recent advances in Li1 + xAlxTi2 – x(PO4)3 solid-state electrolyte for safe lithium batteries, Energy Storage Mater., 2019, vol. 19, p. 379.

    Article  Google Scholar 

  25. Rettenwander, D., Welzl, A., Pristat, S., Tietz, F., Taibl, S., Redhammer, G.J., and Fleig, J., A microcontact impedance study on NASICON type Li1 + xAlxTi2 – x(PO4)3 (0 < x <0.5) single crystals, J. Mater. Chem. A, 2016, vol. 4, p. 1506.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 22-43-02028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Shindrov or N. V. Kosova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Based on the materials of the 16th International Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka, June 27–July 7, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shindrov, A.A., Kosova, N.V. Comparing the Effects of Mechanical Activation and Fusible Additives on the Ionic Conductivity of Li1.3Al0.3Ti1.7(PO4)3. Russ J Electrochem 59, 222–228 (2023). https://doi.org/10.1134/S1023193523030126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523030126

Keywords:

Navigation