Skip to main content
Log in

Analysis of Different Factors Affecting the Product Selectivity of Electrochemical CO2 Reduction Modeled in a Flow Cell

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Using renewable energy sources, the electrochemical CO2 reduction (ECR) into industrially important feedstock is a promising technology to neutralize the carbon cycle and generate energy-dense fuels. Herein, the ECR modeling in a flow cell to produce formate using Sn electrode is presented. We show the effect of different factors such as pressure, velocity, cell potential on the faradaic efficiency and current density of several products and pH around the cathode. The results show that high pressure is required to achieve high current density to maintain a constant faradaic efficiency at a constant velocity. For 2.7 V cell potential, the formate faradaic efficiency increases by 18% when the velocity is increased by an order of magnitude and this variation is not explicit at high-pressure values. The great influence on the formate current density can be observed at a constant cell potential when the pressure is increased, provided that the reduction process limits the mass transfer. At atmospheric pressure and 3.1 V cell potential, enhancing the velocity improves the cathode usage to perform CO2 reduction because decreased concentration boundary layers are observed at high velocity, which improves the CO2 flux for the cathode and also provides the CO2 across the cathode height. Moreover, different electrolytes; sodium bicarbonate (NaHCO3), potassium sulfate (K2SO4), potassium chloride (KCl), sodium sulfate (Na2SO4), along with the electrolyte used in the present study, potassium bicarbonate (KHCO3) have also been experimentally investigated to demonstrate and understand their effects on ECR in detail. The results of the present work can provide useful insights for future experimental research studies on flow cells to adopt optimized operating conditions, consequently improving the overall ECR efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

DATA AVAILIBILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Nitopi, S., Bertheussen, E., Scott, S.B., Liu, X., Engstfeld, A.K., Horch, S., Seger, B., Stephens, I.E.L., Chan, K., Hahn, C., Norskov, J.K., Jaramillo, T.F., and Chorkendorff, I., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte, Chem. Rev., 2019, vol. 119, p. 7610. https://doi.org/10.1021/acs.chemrev.8b00705

    Article  CAS  PubMed  Google Scholar 

  2. Snoeckx, R. and Bogaerts, A., Plasma technology-a novel solution for CO2 conversion? Chem. Soc. Rev., 2017, vol. 46, p. 5805. https://doi.org/10.1039/c6cs00066e

    Article  CAS  PubMed  Google Scholar 

  3. Ganji, P., Borse, R.A., Xie, J., Mohamed, A.G.A., and Wang, Y., Toward commercial carbon dioxide electrolysis, Adv. Sustainable Syst., 2020, vol. 4, p. 1. https://doi.org/10.1002/adsu.202000096

    Article  CAS  Google Scholar 

  4. Albo, J., Alvarez-Guerra, M., Castano, P., and Irabien, A., Towards the electrochemical conversion of carbon dioxide into methanol, Green Chem., 2015, vol. 17, p. 2304.

    Article  CAS  Google Scholar 

  5. Fiorani, G., Guo, W., and Kleij, A.W., Sustainable conversion of carbon dioxide: the advent of organocatalysis, Green Chem., 2015, vol. 17, p. 1375.

    Article  CAS  Google Scholar 

  6. Mustafa, A., Lougou, B.G., Shuai, Y., Wang, Z., Razzaq, S., Zhao, J., and Tan, H., Theoretical insights into the factors affecting the electrochemical reduction of CO2, Sustainable Energy Fuels, 2020, vol. 4, p. 4352.

    Article  CAS  Google Scholar 

  7. Hoang, V.C., Gomes, V.G., and Kornienko, N., Nano energy metal-based nanomaterials for efficient CO2 electroreduction: recent advances in mechanism, material design and selectivity, Nano Energy, 2020, vol. 78, p. 105311. https://doi.org/10.1016/j.nanoen.2020.105311

    Article  CAS  Google Scholar 

  8. Gao, F.-Y., Bao, R.-C., Gao, M.-R., and Yu, S.-H., Electrochemical CO2-to-CO conversion: electrocatalysts, electrolytes, and electrolyzers, J. Mater. Chem. A, 2020, vol. 8, p. 15458. https://doi.org/10.1039/d0ta03525d

    Article  CAS  Google Scholar 

  9. Mustafa, A., Lougou, B.G., Shuai, Y., Wang, Z., and Tan, H., Current technology development for CO2 utilization into solar fuels and chemicals: a review, J. Energy Chem., 2020, vol. 49, p. 96. https://doi.org/10.1016/j.jechem.2020.01.023

    Article  Google Scholar 

  10. Zhang, D., Tao, Z., Feng, F., He, B., Zhou, W., Sun, J., Xu, J., Wang, Q., and Zhao, L., High efficiency and selectivity from synergy: Bi nanoparticles embedded in nitrogen doped porous carbon for electrochemical reduction of CO2 to formate, Electrochim. Acta, 2020, vol. 334, p. 135563.

    Article  CAS  Google Scholar 

  11. Chen, X., Liu, Y., and Wu, J., Sustainable production of formic acid from biomass and carbon dioxide, Mol. Catal., 2020, vol. 483, p. 110716.

    Article  CAS  Google Scholar 

  12. Chang, J., Feng, L., Liu, C., Xing, W., and Hu, X., An effective Pd–Ni2P/C anode catalyst for direct formic acid fuel cells, Angew. Chem. Int. Ed., 2014, vol. 53, p. 122.

    Article  CAS  Google Scholar 

  13. Supronowicz, W., Ignatyev, I.A., Lolli, G., Wolf, A., Zhao, L., and Mleczko, L., Formic acid: a future bridge between the power and chemical industries, Green Chem., 2015, vol. 17, p. 2904.

    Article  CAS  Google Scholar 

  14. Fan, H., Cheng, M., Wang, L., Song, Y., Cui, Y., and Wang, R., Extraordinary electrocatalytic performance for formic acid oxidation by the synergistic effect of Pt and Au on carbon black, Nano Energy, 2018, vol. 48, p. 1.

    Article  CAS  Google Scholar 

  15. Garg, S., Li, M., Weber, A.Z., Ge, L., Li, L., Rudolph, V., Wang, G., and Rufford, T.E., Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials, J. Mater. Chem. A, 2020, vol. 8, p. 1511.

    Article  CAS  Google Scholar 

  16. Higgins, D., Hahn, C., Xiang, C., Jaramillo, T.F., and Weber, A.Z., Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm, ACS Energy Lett., 2018, vol. 4, p. 317.

    Article  Google Scholar 

  17. Hashiba, H., Weng, L.-C., Chen, Y., Sato, H.K., Yotsuhashi, S., Xiang, C., and Weber, A.Z., Effects of electrolyte buffer capacity on surface reactant species and the reaction rate of CO2 in electrochemical CO2 reduction, J. Phys. Chem. C, 2018, vol. 122, p. 3719.

    Article  CAS  Google Scholar 

  18. Weng, L.-C., Bell, A.T., and Weber, A.Z., Towards membrane-electrode assembly systems for CO2 reduction: a modeling study, Energy Environ. Sci., 2019, vol. 2019, p. 1950.

    Article  Google Scholar 

  19. Weng, L.-C., Bell, A.T., and Weber, A.Z., Modeling gas-diffusion electrodes for CO2 reduction, Phys. Chem. Chem. Phys., 2018, vol. 20, p. 16973.

    Article  CAS  PubMed  Google Scholar 

  20. Ringe, S., Clark, E.L., Resasco, J., Walton, A., Seger, B., Bell, A.T., and Chan, K., Understanding cation effects in electrochemical CO2 reduction, Energy Environ. Sci., 2019, vol. 12, p. 3001.

    Article  CAS  Google Scholar 

  21. Morrison, A.R.T., van Beusekom, V., Ramdin, M., van den Broeke, L.J.P., Vlugt, T.J.H., and de Jong, W., Modeling the electrochemical conversion of carbon dioxide to formic acid or formate at elevated pressures, J. Electrochem. Soc., 2019, vol. 166, p. E77.

    Article  CAS  Google Scholar 

  22. Proietto, F., Schiavo, B., Galia, A., and Scialdone, O., Electrochemical conversion of CO2 to HCOOH at tin cathode in a pressurized undivided filter-press cell, Electrochim. Acta, 2018, vol. 277, p. 30.

    Article  CAS  Google Scholar 

  23. Allen, J.B. and Larry, R.F., Electrochemical Methods Fundamentals and Applications, John Wiley & Sons, 2001.

    Google Scholar 

  24. Lee, S., Ocon, J.D., Son, Y., and Lee, J., Alkaline CO2 electrolysis toward selective and Ccontinuous HCOO production over SnO2 nanocatalysts, J. Phys. Chem. C, 2015, vol. 119, p. 4884. https://doi.org/10.1021/jp512436w

    Article  CAS  Google Scholar 

  25. Wu, J., Risalvato, F.G., Ke, F.-S., Pellechia, P.J., and Zhou, X.-D., Electrochemical reduction of carbon dioxide I. Effects of the electrolyte on the selectivity and activity with Sn electrode, J. Electrochem. Soc., 2012, vol. 159, p. F353.

    Article  CAS  Google Scholar 

  26. Kortlever, R., Peters, I., Koper, S., and Koper, M.T.M., Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd–Pt nanoparticles, ACS Catal., 2015, vol. 5, p. 3916. https://doi.org/10.1021/acscatal.5b00602

    Article  CAS  Google Scholar 

  27. Liu, C., Colon, B.C., Ziesack, M., Silver, P.A., and Nocera, D.G., Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis, Science, 2016, vol. 352, p. 1210.

    Article  CAS  PubMed  Google Scholar 

  28. Todoroki, M., Hara, K., Kudo, A., and Sakata, T., Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution, J. Electroanal. Chem., 1995, vol. 394, p. 199.

    Article  Google Scholar 

  29. Schillings, J., Doche, O., and Deseure, J., Modeling of electrochemically generated bubbly flow under buoyancy-driven and forced convection, Int. J. Heat Mass Transf., 2015, vol. 85, p. 292.

    Article  CAS  Google Scholar 

  30. Burdyny, T., Graham, P.J., Pang, Y., Dinh, C.-T., Liu, M., Sargent, E.H., and Sinton, D., Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry, ACS Sustainably Chem. Eng., 2017, vol. 5, p. 4031.

    Article  CAS  Google Scholar 

  31. McCleskey, R.B., Electrical conductivity of electrolytes found in natural waters from (5 to 90), J. Chem. Eng. Data, 2011, vol. 56, p. 317.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the China National Key Research and Development Plan Project (2018YFA0702300), National Natural Science Foundation of China Grant nos. 51876049; 51950410590, China Postdoctoral Science Foundation Grant numbers: 2019M651284, Fundamental Research Funds for the Central Universities (HIT.NSRIF.2020054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bachirou Guene Lougou or Shuai Yong.

Ethics declarations

Authors declare that there is no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azeem Mustafa, Lougou, B.G., Yong, S. et al. Analysis of Different Factors Affecting the Product Selectivity of Electrochemical CO2 Reduction Modeled in a Flow Cell. Russ J Electrochem 59, 229–240 (2023). https://doi.org/10.1134/S1023193523030096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523030096

Keywords:

Navigation