Skip to main content
Log in

The Nature of d0 Ion Effect on the Electrochemical Activity of the O2–/O-Redox-Couple in Oxyfluorides with the Disordered Rock-Salt Structure

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of the nature of the transition metal ion (electron configuration 3d0 and 4d0) on the local structure and electrochemical properties of lithium-rich oxyfluorides with disordered rock-salt structure Li1 + x(MеMn3+)1 – xO2 – yFy, where Mе = Ti4+, Nb5+, 0.2 ≤ x ≤ 0.288 and 0.05 ≤ y ≤ 0.15 is studied. The compounds are thoroughly investigated by the methods of X-ray diffraction analysis, scanning electron microscopy, granulometry, electron spin resonance spectroscopy, and galvanostatic cycling. The galvanostatic-cycling curves of the compounds have two plateaus in the voltage regions of 3.3–3.4 and 4.1–4.3 V. They can be attributed to redox-processes involving two couples: Mn3+/Mn4+ and O2–/O. In the case of Ti-containing oxyfluorides with disordered rock-salt structure, with the increasing of fluorine content the contribution from O2–/O-couple during the electrochemical process decreases. In both systems of the oxyfluorides with disordered rock-salt structure we observed formation of paramagnetic clusters Mn3+–O–Mn4+ whose number increased with the increasing of Mn content. The largest clusterization is observed for the sample Li1.266Nb0.217Mn0.55O1.85F0.15. At the same time, the diffusion coefficient for Nb-containing oxyfluorides with disordered rock-salt structure is lower by order of magnitude than for the Ti-containing ones. This may be connected with the strongest clustering of Mn3+ ions, which hinders the Li+ ion macrodiffusion and, as a consequence, deteriorates the kinetics of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Lee, J., Urban, A., Li, X., Dong, S., Hautier, G., and Ceder, G., Unlocking the potential of cation disordered oxides for rechargeable lithium batteries, Science, 2014, vol. 343, p. 519.

    Article  CAS  PubMed  Google Scholar 

  2. Yabuuchi, N., Material design concept of lithium-excess electrode materials with rocksalt-related structures for rechargeable non-aqueous batteries, Chem. Rec., 2019, vol. 19, p. 690.

    Article  CAS  PubMed  Google Scholar 

  3. Chen, D., Wu, J., Papp, J. K., McCloskey, B., and Chen, G., Role of redox-inactive transition-metals in the behavior of cation-disordered rocksalt cathodes, Small, 2020, vol. 16, p. 173.

    Google Scholar 

  4. Kosova, N.V., Mishchenko, K.V., Podgornova, O.A., Semykina, D.O., and Shindrov, A.A., High-energy density electrode materials with disordered rock-salt structure, Russ. J. Electrochem., 2022, vol. 58(7), p. 567.

    Article  CAS  Google Scholar 

  5. Ji, H., Urban, A., Kitchaev, D.A., Kwon, D.H., Artrith, N., Ophus, C., Huang, W.H., Cai, Z., Shi, T., Kim, J.C., Kim, H., and Ceder, G., Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries, Nat. Commun., 2019, vol. 10, p. 592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, L., Lun, Zh., Chen, D., Yue, Y., Tong, W., Chen, G., Ceder, G., and Wang, C., Fluorination-enhanced surface stability of cation disordered rocksalt cathodes for Li-ion batteries, Adv. Funct. Mater., 2021, vol. 31, no. 2101888.

  7. Croguennec, L., Bains, J., Ménétrier, M., Flambard, A., Bekaert, E., Jordy, C., Biensan, P., and Delmas, C., Synthesis of “Li1.1 (Ni0.425Mn0.425Co0.15)0.9O1.8F0.2” materials by different routes: is there fluorine substitution for oxygen? J. Electrochem. Soc., 2009, vol. 156, p. A349.

    Article  CAS  Google Scholar 

  8. Lun, Z., Ouyang, B., Kitchaev, D., Clément, R., Papp, J., Balasubramanian, M., Tian, Y., Lei, T., Shi, T., McCloskey, B., Lee, J., and Ceder, G., Improved cycling performance of Li-excess cation-disordered cathode materials upon fluorine substitution, Adv. Energy Mater., 2019, vol. 9, p. 1802959.

    Article  Google Scholar 

  9. Ahn, J., Chen, D., and Chen, G., A fluorination method for improving cation-disordered rocksalt cathode performance, Adv. Energy Mater., 2020, vol. 10, No. 2001671.

  10. Crafton, M., Yue, Y., Huang, T., Tong, W., and McCloskey, B.D., Anion reactivity in cation-disordered rocksalt cathode materials: the influence of fluorine substitution, Adv. Energy Mater., 2020, vol. 10, no. 2001500.

  11. Lun, Z., Ouyang, B., Kwon, D.H., Ha, Y., Foley, E.E., Huang, T.Y., Cai, Z., Kim, H., Balasubramanian, M., Sun, Y., Huang, J., Tian, Y., Kim, H., McCloskey, B.D., Yang, W., Clément, R.J., Ji, H., and Ceder, G., Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries, Nat. Mater., 2021, vol. 20, p. 214.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, K., Zheng, S., Ren, F., Wu, J., Liu, H., Luo, M., Liu, X., Xiang, Y., Zhang, C., Yang, W., He, L., and Yang, Y., Fluorination effect for stabilizing cationic and anionic redox activities in cation-disordered cathode materials, Energy Storage Mater., 2020, vol. 32, p. 234.

    Article  Google Scholar 

  13. Lee, J., Kitchaev, D.A., Kwon, D.H., Lee, C.W., Papp, J.K., Liu, Y.S., Lun, Z., Clément, R.J., Shi, T., McCloskey, B.D., Guo, J., Balasubramanian, M., and Ceder, G., Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials, Nat. Mater., 2018, vol. 556, p. 185.

    CAS  Google Scholar 

  14. Ouyang, B., Artrith, N., Lun, Z., Jadidi, Z., Kitchaev, D.A., Ji, H., Urban, A., and Ceder, G., Effect of fluorination on lithium transport and short-range order in disordered-rocksalt-type lithium-ion battery cathodes, Adv. Energy Mater., 2020, vol. 10, no. 1903240.

  15. Lun, Z., Ouyang, B., Cai, Z., Clément, R.J., Kwon, D.H., Huang, J., Papp, J.K., Balasubramanian, M., Tian, Y., McCloskey, B.D., Ji, H., Kim, H., Kitchaev, D.A., and Ceder, G., Design principles for high-capacity Mn-based cation-disordered rocksalt cathodes, Chem., 2020, vol. 6, p. 153.

    Article  CAS  Google Scholar 

  16. Semykina, D.O., Morkhova, Ye.A., Kabanov, A.A., Mishchenko, K.V., Slobodyuk, A.B., Kirsanova, M.A., Podgornova, O.A., Shindrov, A.A., Okhotnikov, K.S., and Kosova, N.V., Effect of transition metal cations on the local structure and lithium transport in disordered rock-salt oxides, Phys. Chem. Chem. Phys., 2022, vol. 24, p. 5823.

    Article  CAS  PubMed  Google Scholar 

  17. Mishchenko, K.V., Kirsanova, M.A., Slobodyuk, A.B., Krinitsyna, A.A., and Kosova, N.V., Effect of cooling rate on the structure and electrochemical properties of Mn-based oxyfluorides with cation-disordered rock-salt structure, Chim. Techno Acta, 2022, vol. 9(3), no. 20229310.

  18. Stoyanova, R., Gorova, M., and Zhecheva, E., EPR of Mn4+ in spinels Li1 + xMn2 – xO4 with 0 ≤ x ≤ 0.1, J. Phys. Chem. Solids, 2000, vol. 61(4), p. 609.

    Article  CAS  Google Scholar 

  19. Julien, C., Gendron, F., Ziolkiewicz, S., and Nazri, G.A., Electrical and ESR studies of lithium manganese oxide spinels, Mat. Res. Soc. Symp., 1998, vol. 548, p.187.

  20. Geng, F., Hu, B., Li, C., Zhao, C., Lafon, O., Trébosc, J., Amoureux, J.P., Shen, M., and Hu, B., Anionic redox reactions and structural degradation in a cation-disordered rock-salt Li1.2Ti0.4Mn0.4O2 cathode material revealed by solid-state NMR and EPR, J. Mater. Chem. A, 2020, vol. 8(32), p. 16515.

    Article  CAS  Google Scholar 

  21. Chen, D., Ahn, J., and Chen, G., An overview of cation-disordered lithium excess rocksalt cathode, ACS Energy Lett., 2021, vol. 6, p. 1358.

    Article  CAS  Google Scholar 

  22. Clément, R.J., Lun, Z., and Ceder, G., Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes, Energy Environ. Sci., 2020, vol. 13, p. 345.

    Article  Google Scholar 

  23. Weppner, W. and Huggins, R.A., Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb, J. Electrochem. Soc., 1977, vol. 124, p. 1569.

    Article  CAS  Google Scholar 

  24. Wang, R., Huang, B., Qu, Z., Gong, Y., He, B., and Wang, H., Research on the kinetic properties of the cation disordered rock-salt Li-excess Li1.25Nb0.25Mn0.5O2 material, Solid State Ionics, 2019, vol. 339, No. 114999.

Download references

Funding

The reported study was funded by the Russian Science Foundation according to the research project no. 21-73-20064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kosova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Based on the materials of the 16th International Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, June 27–July 7, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishchenko, K.V., Podgornova, O.A. & Kosova, N.V. The Nature of d0 Ion Effect on the Electrochemical Activity of the O2–/O-Redox-Couple in Oxyfluorides with the Disordered Rock-Salt Structure. Russ J Electrochem 59, 204–212 (2023). https://doi.org/10.1134/S1023193523030084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523030084

Keywords:

Navigation