Skip to main content
Log in

Preparation and Electrochemical Performance of V2O5/Flake Graphite Material for Aqueous Zinc-Ion Battery

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Aqueous zinc batteries with low cost and inherent safety are considered to be the most promising energy storage devices. V2O5/Flake graphite material have been successfully synthesized via high-temperature magnetic stirring and sintering method. V2O5/Flake graphite material were characterized by X-ray diffraction, FESEM, XPS and TGA. The addition of flake graphite not only improves the conductivity of the cathode material, provides more active sites for the Zn2+ insertion/extraction process, but also has a certain isolation effect, avoiding the direct contact between the electrolyte and the V2O5 to cause dissolution. VC51 delivers a high discharge capacity of 328.1 mA h g–1 at 0.1 A g–1, good capacity retention of 81.4% after 300 cycles, shows good cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Keck, F., Lenzen, M., Vassallo, A., and Li, M., The impact of battery energy storage for renewable energy power grids in Australia, Energy, 2019, vol. 173, p. 647.

    Article  Google Scholar 

  2. He, Y., Xiang, K., Wang, Y., Zhou, W., Zhu, Y., Xiao, L., Chen, W., Chen, X., Chen, H., Cheng, H., and Lu, Z., Scalable and controllable synthesis of multi-shell hollow carbon microspheres for high-performance supercapacitors, Carbon, 2019, vol. 154, p. 330.

    Article  CAS  Google Scholar 

  3. Zubi, G., Dufo-López, R., Carvalho, M., and Pasaoglu, G., The lithium-ion battery: state of the art and future perspectives, Renewable Sustainable Energy Rev., 2018, vol. 89, p. 292.

    Article  Google Scholar 

  4. Liao, H., Zhong, W., Li, T., Han, J., Su, X., Tong, X., and Zhang, Y., A review of self-healing electrolyte and their applications in flexible/stretchable energy storage devices, Electrochim. Acta, 2022, vol. 404, p. 139730.

    Article  CAS  Google Scholar 

  5. Sui, Y., Hao, Y., Zhang, X., Li, J., Wen, G., Zhong, S., Zhang, Z., and Wu, L., Improved electrochemical properties of vanadium substituted Na0.67Fe0.5Mn0.5O2 cathode material for sodium-ion batteries, Ceram. Int., 2021, vol. 47, p. 5227.

    Article  CAS  Google Scholar 

  6. Fang, G., Zhou, J., Pan, A., and Liang, S., Recent advances in aqueous zinc-ion batteries, ACS Energy Lett., 2018, vol. 3, p. 2480.

    Article  CAS  Google Scholar 

  7. Xu, C., Li, B., Du, H., and Kang, F., Energetic zinc ion chemistry: the rechargeable zinc ion battery, Angew. Chem., 2012, vol. 51, p. 933.

    Article  CAS  Google Scholar 

  8. Demir-Cakan, R., Palacin, M.R., and Croguennec, L., Rechargeable aqueous electrolyte batteries: from univalent to multivalent cation chemistry, J. Mater. Chem. A, 2019, vol. 7, p. 20539.

    Article  Google Scholar 

  9. Liu, Y., Xiang, K., Zhou, Y., Xia, Z., Zheng, J., and Xu, Y., Performance and application of carbon composite MoS3 as cathode materials for aqueous zinc-ion batteries, J. Alloys Compd., 2022, vol. 893. p. 162156.

    Article  CAS  Google Scholar 

  10. Yan, M., He, P., Chen, Y., Wang, S., Wei, Q., Zhao, K., Xu, X., An, Q., Shuang, Y., Shao, Y., Mueller, K.T., Mai, L., Liu, J., and Yang, J., Water-lubricated intercalation in V2O5nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries, Adv. Mater., 2018, vol. 30, p. 1703725.

    Article  Google Scholar 

  11. Alfaruqi, M.H., Mathew, V., Song, J., Kim, S., Islam, S., Pham, D.T., Jo, J., Kim, S., Baboo, J.P., Xiu, Z., Lee, K.S., Sun, Y.K., and Kim, J., Electrochemical zinc intercalation in lithium vanadium oxide: a highcapacity zinc-ion battery cathode, Chem. Mater., 2017, vol. 29, p. 1684.

    Article  CAS  Google Scholar 

  12. Cai, Y., Liu, F., Luo, Z., Fang, G., Zhou, J., Pan, A., and Liang, S., Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode, Energy Storage Mater., 2018, vol. 13, p. 168.

    Article  Google Scholar 

  13. Hu, P., Yan, M., Zhu, T., Wang, X., Wei, X., Li, J., Zhou, L., Li, Z., Chen, L., and Mai, L., Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life, ACS Appl. Mater. Inter., 2017, vol. 9, p. 42717.

    Article  CAS  Google Scholar 

  14. Dai, X., Wan, F., Zhang, L., Cao, H., and Niu, Z., Freestanding graphene/VO2 omposite films for highly stable aqueous Zn-ion batteries with superior rate performance, Energy Storage Mater., 2019, vol. 17, p. 143.

    Article  Google Scholar 

  15. Peng, Z., Wei, Q., Tan, S., He, P., and Luo, W., An, Q., and Mai, L., Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries, Chem. Commun., 2018, vol. 54, p. 4041.

    Article  CAS  Google Scholar 

  16. He, P., Quan, Y., Xu, X., Yan, M., and Yang, W., An, Q., He, L., and Mai, L., High-Performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode, Small, 2017, vol. 13, p. 1702551.

    Article  Google Scholar 

  17. Zhou, W., Chen, J., Chen, M., Xu, X., Tian, Q., Xu, J., and Wong, C., Rod-like anhydrous V2O5 assembled by tiny nanosheets as a high-performance cathode material for aqueous zinc-ion batteries, RSC Adv., 2019, vol. 9, p. 30556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, H., Qin, H., Chen, L., Wu, J., and Yang, Z., V2O5@CNTs as cathode of aqueous zinc ion battery with high rate and high stability, J. Alloys Compd., 2020, vol. 842, p. 155912.

    Article  CAS  Google Scholar 

  19. Du, H., Lei, J., Xiang, K., Lin, W., Zheng, J., and Liao, H., Facile synthesis of NiCo2O4 nanosheets with oxygen vacancies for aqueous zinc-ion supercapacitors, J. Alloys Compd., 2021, vol. 896, p. 162925.

    Article  Google Scholar 

  20. Zeng, Y., Zhang, X., Meng, Y., Yu, M., Yi, J., Wu, Y., Lu, X., and Tong, Y., Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery, Adv. Mater., 2017, vol. 29, p. 1700274.

    Article  Google Scholar 

  21. Zhu, C., Fang, G., Zhou, J., Guo, J., Wang, Z., Wang, C., Li, J., Tang, Y., and Liang, S., Binder-free stainless steel@Mn3O4 nanoflower composite: a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life, J. Mater. Chem., 2018, vol. 6, p. 9677.

    Article  CAS  Google Scholar 

  22. Liu, M., Zhao, Q., Liu, H., Yang, J., Chen, X., Yang, L., Cui, Y., Huang, W., Zhao, W., Song, A., Wang, Y., Ding, S., Song, Y., Qian, G., Chen, H., and Pan, F., Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery, Nano Energy, 2019, vol. 64, p. 103942.

    Article  CAS  Google Scholar 

  23. Alfaruqi, M.H., Mathew, V., Gim, J., Kim, S., Song, J., Baboo, J.P., Choi, S.H., and Kim, J., Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system, Chem. Mater., 2015, vol. 27, p. 3609.

    Article  CAS  Google Scholar 

  24. Zhang, L., Chen, L., Zhou, X., and Liu, Z., Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system, Adv. Energy Mater., 2015, vol. 5, p. 1400930.

    Article  Google Scholar 

  25. Chae, M.S., Heo, J.W., Lim, S.C., and Hong, S.T., Electrochemical zinc-ion intercalation properties and crystal structures of ZnMo6S8 and Zn2Mo6S8 chevrel phases in aqueous electrolytes, Inorg. Chem., 2016, vol. 55, p. 3294.

    Article  CAS  PubMed  Google Scholar 

  26. Kundu, D., Oberholzer, P., Glaros, C., Bouzid, A., Tervoort, E., Pasquarello, A., and Niederberger, M., Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution towards stable electrochemical cycling, Chem. Mater., 2018, vol. 30, p. 3874.

    Article  CAS  Google Scholar 

  27. Gupta, T., Kim, A., Phadke, S., Biswas, S., Luong, T., Hertzberg, B., Chamoun, M., Evanslutterodt, K., and Steingart, D.A., Improving the cycle life of a high-rate, high-potential aqueous dual-ion battery using hyper-dendritic zinc and copper hexacyanoferrate, J. Power Sources, 2016, vol. 305, p. 22.

    Article  CAS  Google Scholar 

  28. Fang, G., Zhou, J., Hu, Y., Cao, X., Tang, Y., and Liang, S., Facile synthesis of potassium vanadate cathode material with superior cycling stability for lithium ion batteries, J. Power Sources, 2015, vol. 275, p. 694.

    Article  CAS  Google Scholar 

  29. Liu, C., Yao, J., Zou, Z., Li, Y., and Cao, G., Boosting the cycling stability of hydrated vanadium pentoxide by Y3+ pillaring for sodium-ion batteries, Mater. Today Energy, 2019, vol. 11, p. 218.

    Article  CAS  Google Scholar 

  30. Liang, S., Zhou, J., Fang, G., Zhang, C., Wu, J., Tang, Y., and Pan, A., Synthesis of mesoporous β‑Na0.33V2O5 with enhanced electrochemical performance for lithium ion batteries, Electrochim. Acta, 2014, vol. 130, p. 119.

    Article  CAS  Google Scholar 

  31. Wan, F., Zhang, L., Dai, X., Wang, X., Niu, Z., and Chen, J., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers, Nat. Commun., 2018, vol. 9, p. 1656.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen, D., Lu, M., Wang, B., Chai, R., Li, L., Cai, D., Yang, H., Liu, B., Zhang, Y., and Han, W., Uncover the mystery of high-performance aqueous zinc-ion batteries constructed by oxygen-doped vanadium nitride cathode: cationic conversion reaction works, Energy Storage Mater., 2021, vol. 35, p. 679.

    Article  Google Scholar 

  33. Wang, X., Xi, B., Ma, X., Feng, Z., Jia, Y., Feng, J., Qian, Y., and Xiong, S., Boosting zinc-ion storage capability by effectively suppressing vanadium dissolution based on robust layered barium vanadate, Nano. Lett., 2020, vol. 20, p. 2899.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (51972108, 51772090), China Postdoctoral Science Foundation (2021M693777), Natural Science Foundation of Hunan Province (2020JJ4272).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaixiong Xiang or Can Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiahao Lei, Xiang, K., Hu, J. et al. Preparation and Electrochemical Performance of V2O5/Flake Graphite Material for Aqueous Zinc-Ion Battery. Russ J Electrochem 59, 241–247 (2023). https://doi.org/10.1134/S1023193523030072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523030072

Keywords:

Navigation