Skip to main content
Log in

Properties of Li1.3Al0.3Ti1.7(PO4)3 Lithium-Conducting Ceramics Synthesized by Spark Plasma Sintering

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Results on the synthesis of lithium-conducting ceramics Li1.3Al0.3Ti1.7(PO4)3 by the method of spark plasma sintering (SPS) are presented. In the first stage, the monophase Li1.3Al0.3Ti1.7(PO4)3 solid-electrolyte powder is synthesized from the nitrate-peroxide precursor. Its subsequent consolidation by the SPS method provides the formation of ceramics with the high Li-ionic conductivity and the density on the level of 97–98%. The microstructure and the electrochemical properties of the Li1.3Al0.3Ti1.7(PO4)3 ceramics are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Yang, S., Zhang, F., Ding, H., He, P., and Zhou, H., Lithium metal extraction from seawater, Joule, 2018, vol. 2, p. 1648.

    Article  Google Scholar 

  2. Xie, N., Li, D., Li, Y., Gong, J., and Hu, X., Solar-assisted lithium metal recovery from spent lithium iron phosphate batteries, Chem. Eng. J. Adv., 2021, vol. 8, 100163. https://doi.org/10.1016/j.ceja.2021.100163

    Article  CAS  Google Scholar 

  3. Yen, P-Y., Lee, M-L., Gregory, D. H., and Liu, W-R., Optimization of sintering process on Li1 + xAlxTi2 – x(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries, Ceram. Int., 2020, vol. 46, p. 20529.

    Article  CAS  Google Scholar 

  4. Lee, S.-D., Jung, K.-N., Kim, H., Shin, H.-S., Song, S.-W., Park, M.-S., and Lee, J.-W., Composite electrolyte for all-solid-state lithium batteries: Low-temperature fabrication and conductivity enhancement, ChemSusChem., 2017, vol. 10, p. 2175. https://doi.org/10.1002/cssc.201700104

    Article  CAS  PubMed  Google Scholar 

  5. Kwatek, K., Ślubowska, W., Trébosc, J., Lafon, O., and Nowiński, J.L., Structural and electrical properties of ceramic Li-ion conductors based on Li1.3Al0.3Ti1.7(PO4)3-LiF, J. Eur. Ceram. Soc., 2020, vol. 40, p. 85.

    Article  CAS  Google Scholar 

  6. Papynov, E.K., Shichalin, O.O., Mayorov, V.Y., Modin, E.B., Portnyagin, A.S., Tkachenko, I.A., Belov, A.A., Gridasova, E.A., Tananaev, I.G., and Avramenko, V.A., Spark plasma sintering as a high-tech approach in a new generation of synthesis of nanostructured functional ceramics, Nanotechnol. Russ., 2017, vol. 12, nos. 1–2, p. 49.

    Article  CAS  Google Scholar 

  7. Papynov, E.K., Shichalin, O.O., Maiorov, V. Yu., Tkachenko, I.A., Golub, A.V., Tananaev, I.G., and Avramenko, V.A., Technology of spark plasma sintering as a promising solution in the synthesis of functional nanostructured ceramics, Vestn. Dal’nevost. Fil. Russ. Akad. Nauk, 2016, no. 6, p. 15.

  8. Papynov, E.K., Shichalin, O.O., Buravlev, I.Yu., Portnya-gin, A.S., Belov, A.A., Maiorov, V.Yu., Skurikhina, Yu.E., Merkulov, E.B., Glavinskaya, V.O., Nomerovskii, A.D., Golub, A.V., and Shapkin, N.P., Reactive spark plasma synthesis of porous bioceramic wollastonite, Russ. J. Inorg. Chem., 2020, vol. 65, no. 2, p. 263. https://doi.org/10.1134/S0036023620020138]

    Article  CAS  Google Scholar 

  9. Delaizir, G., Viallet, V., Aboulaich, A., Bouchet, R., Tortet, L., Seznec, V., Morcrette, M., Tarascon, J.-M., Rozier, P., and Dollé, M., The stone age revisited: Building a monolithic inorganic lithium-ion battery, Adv. Funct. Mater., 2012, vol. 22, p. 2140. https://doi.org/10.1002/adfm.201102479

    Article  CAS  Google Scholar 

  10. Tong, H., Liu, J., Qiao, Y., and Song, X., Characteristics of interface between solid electrolyte and electrode in all-solid-state batteries prepared by spark plasma sintering, J. Power Sources, 2022, vol. 521, 230964.

    Article  CAS  Google Scholar 

  11. Perez-Estebanez, M., Isasi-Marín, J., Rivera-Calzada, A., Leon, C., and Nygren, M., Spark plasma versus conventional sintering in the electrical properties of NASICON-type materials, J. Alloys Compd., 2015, vol. 651, p. 636.

    Article  CAS  Google Scholar 

  12. Xu, X., Wen, Z., Yang, X., and Chen, L., Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique, Mater. Res. Bull., 2008, vol. 43, p. 2334.

    Article  CAS  Google Scholar 

  13. Waetzig, K., Rost, A., Heubner, C., Coeler, M., Nikolowski, K., Wolter, M., and Schilm, J., Synthesis and sintering of Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte for ceramics with improved Li+ conductivity, J. Alloys Compd., 2020, vol. 818, 153237.

    Article  CAS  Google Scholar 

  14. Kali, R. and Mukhopadhyay, A., Spark plasma sintered/synthesized dense and nanostructured materials for solid-state Li-ion batteries: Overview and perspective, J. Power Sources, 2014, vol. 247, p. 920.

    Article  CAS  Google Scholar 

  15. Kunshina, G.B., Efremov, V.V., and Lokshin, E.P., Microstructure and ionic conductivity of lithium-aluminum titanophosphate, Russ. J. Electrochem., 2013, vol. 49, p. 725.

    Article  CAS  Google Scholar 

  16. Kunshina, G.B., Shcherbina, O.B., and Bocharova, I.V., Conductivity and mechanical properties of lithium-conducting ceramic solid electrolytes with the NASICON structure, Russ. J. Electrochem., 2021, vol. 57, p. 953.]

    Article  CAS  Google Scholar 

  17. He, S. and Xu, Y., Hydrothermal-assisted solid-state reaction synthesis of high ionic conductivity Li1 + xAlxTi2 – x(PO4)3 ceramic solid electrolytes: The effect of Al3+ doping content, Solid State Ionics, 2019, vol. 343, p. 115078.

    Article  CAS  Google Scholar 

  18. Huang, Y., Jiang, Y., Zhou, Y., Hu, Z., and Zhu, X., Influence of liquid solutions on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes, ChemElectroChem., 2019, vol. 6, p. 6016.

    Article  CAS  Google Scholar 

  19. Kotobuki, M. and Koishi, M., Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol-gel route using various Al sources, Ceram. Int., 2013, vol. 39, p. 4645.

    Article  CAS  Google Scholar 

  20. Ma, Q., Xu, Q., Tsai, C.-L., Tietz, F., and Guillon, O., A novel sol-gel method for large-scale production of nanopowders: Preparation of Li1.5Al0.5Ti1.5(PO4)3 as an example, J. Amer. Ceram. Soc., 2016, vol. 99, issue 2, p. 410.

    Article  CAS  Google Scholar 

  21. Rossbach, A. and Neitzel-Grieshammer, S., Preparation, characterization and conductivity of NASICON-type \({\text{L}}{{{\text{i}}}_{{1 + x}}}{\text{M}}_{x}^{{{\text{(III)}}}}{\text{T}}{{{\text{i}}}_{{2 - x}}}{{\left( {{\text{P}}{{{\text{O}}}_{{\text{4}}}}} \right)}_{3}}\) (M(III) = Al, Cr, Fe; 0.5 ≤ x ≤ 2.0) materials via modern, scalable synthesis routes, Open Ceramics, 2022, vol. 9, 100231. https://doi.org/10.1016/j.oceram.2022.10023110.1016/j.oceram.2022.100231

    Article  CAS  Google Scholar 

  22. Jackman, S.D. and Cutler, R.A., Effect of microcracking on ionic conductivity in LATP, J. Power Sources, 2012, vol. 218, p. 65. https://doi.org/10.1016/j.jpowsour.2012.06.081

    Article  CAS  Google Scholar 

  23. Waetzig, K., Rost, A., Langklotz, U., Matthey, B., and Schilm, J., An explanation of the microcrack formation in Li1.3Al0.3Ti1.7(PO4)3 ceramics, J. Eur. Ceram. Soc., 2016, vol. 36, p. 1995.

    Article  CAS  Google Scholar 

  24. Wolfenstine, J., Allen, J.L., Sumner, J., and Sakamoto, J., Electrical and mechanical properties of hot-pressed versus sintered LiTi2(PO4)3, Solid State Ionics, 2009, vol. 180, p. 961.

    Article  CAS  Google Scholar 

  25. Narváez-Semanate, J.L. and Rodrigues, A.C.M., Microstructure and ionic conductivity of Li1 + xAlxTi2 – x(PO4)3 NASICON glass-ceramics, Solid State Ionics, 2010, vol. 181, p. 1197. https://doi.org/10.1016/j.ssi.2010.05.010

    Article  CAS  Google Scholar 

  26. Krasnikova, I.V., Pogosova, M.A., Sanin, A.O., and Stevenson, K.J., Methods & protocols: towards standardization of electrochemical impedance spectroscopy studies of Li-ion conductive ceramics, Chem. Mater., 2020, vol. 32, p. 2232. https://doi.org/10.1021/acs.chemmater.9b04899

    Article  CAS  Google Scholar 

  27. Xu, X., Wen, Z., Wu, X., Yang, X., and Gu, Z., Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3xLi2O (x = 0.0–0.20) with good electrical and electrochemical properties, J. Amer. Ceram. Soc., 2007, vol. 90, no. 9, p. 2802. https://doi.org/10.1111/j.1551-2916.2007.01827.x

    Article  CAS  Google Scholar 

  28. Ren, Y., Deng, H., Zhao, H., Zhou, Z., and Wei, Z., A simple and effective method to prepare dense Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte for lithium-oxygen batteries, Ionics, 2020, vol. 26, p. 6049. https://doi.org/10.1007/s11581-020-03781-5

    Article  CAS  Google Scholar 

  29. Svitan’ko, A.I., Novikova, S.A., Stenina, I.A., Sko-pets, V.A., and Yaroslavtsev, A.B., Microstructure and ion transport in Li1 + xTi2 – xMx(PO4)3 (M = Cr, Fe, Al) NASICON-type materials, Inorg. Mater., 2014, vol. 50, no. 3, p. 273.

    Article  Google Scholar 

  30. Kunshina, G.B., Bocharova, I.V., and Ivanenko, V.I., Effect of thermal treatment modes on ion-conducting properties of lithium-aluminum titanophosphate, Russ. J. Appl. Chem., 2017, vol. 90, no. 3, p. 374.]

    Article  CAS  Google Scholar 

  31. Cretin, M. and Fabry, P., Comparative study of lithium ion conductors in the system \({\text{L}}{{{\text{i}}}_{{1 + x}}}{\text{A}}{{{\text{l}}}_{x}}{\text{A}}_{{2 - x}}^{{{\text{IV}}}}{{\left( {{\text{P}}{{{\text{O}}}_{{\text{4}}}}} \right)}_{3}}\) with AIV = Ti or Ge and 0 ≤ x ≤ 0.7 for use as Li+ sensitive membranes, J. Eur. Ceram. Soc., 1999, vol. 19, p. 2931.

    Article  CAS  Google Scholar 

  32. Irvin, J.T.S., Sinclair, D.C., and West, A.R., Electroceramics: Characterization by impedance spectroscopy, Adv. Mater., 1990, vol. 2, no. 3, p. 132.

    Article  Google Scholar 

  33. Yang, G. and Park, S.-J., The formation mechanism of Li4Ti5O12 – y solid solutions prepared by carbothermal reduction and the effect of Ti3+ on electrochemical performance, Sci. Rep., 2019, vol. 9, 4774. https://doi.org/10.1038/s41598-019-41206-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the State Program of the Ministry of Science and Higher Education of the RF (grants FMEZ-2022-0015 and FZNS-2023-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Kunshina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Based on the materials of the 16th International Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka, June 27–July 7, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunshina, G.B., Shichalin, O.O., Belov, A.A. et al. Properties of Li1.3Al0.3Ti1.7(PO4)3 Lithium-Conducting Ceramics Synthesized by Spark Plasma Sintering. Russ J Electrochem 59, 173–181 (2023). https://doi.org/10.1134/S1023193523030060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523030060

Keywords:

Navigation