Skip to main content
Log in

Effect of Current Density on Specific Characteristics of Negative Electrodes for Lithium-Ion Batteries Based on Heat-Treated Petroleum Coke

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The results of comparative studies of the effect of current density on the average discharge voltage and specific discharge capacity of carbon electrodes based on heat-treated petroleum coke and graphite are presented. The carbon obtained by heat treatment of petroleum coke is shown to have better kinetic characteristics than graphite. The increase in the current density from 0.2 mA/cm2 (36 mA/g) to 2 mA/cm2 (364 mA/g) leads to a decrease in the discharge capacity of heat-treated petroleum coke by 26%; graphite, by 93%. When the current density is restored to 0.2 mA/cm2, the discharge capacity of carbon electrodes is also restored to its initial value. The increase in the current density is also shown to lead to increase in the average discharge voltage of lithium–carbon cells. Thus, with the increase in current density from 0.2 to 2 mA/cm2, the average discharge voltage of the lithium–carbon cells with the electrode active component of the heat-treated petroleum coke increased from 0.39 to 0.62 V; that of graphite, from 0.14 to 0.35 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Reddy, M.V., Mauger, A., Julien, C.M., Paolella, A., and Zaghib, K., Brief History of Early Lithium-Battery Development, Materials, 2020, vol. 13, p. 1884. https://doi.org/10.3390/ma13081884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Broussely, M., Biensan, P., and Simon, B., Lithium insertion into host materials: the key to success for Li ion batteries, Electrochim. Acta, 1999, vol. 45, p. 3. https://doi.org/10.1016/S0013-4686(99)00189-9

    Article  CAS  Google Scholar 

  3. Liu, Y., Li, W., and Zhou, X., An investigation of Li2TiO3–coke composite anode material for Li-ion batteries, RSC Advances, 2019, vol. 9, p. 11710. https://doi.org/10.1039/C9RA02611H

    Article  Google Scholar 

  4. Maurin, G., Bousquet, C., Henn, F., Bernier, P., Almairac, R., and Simon, B., Electrochemical lithium intercalation into multiwall carbon nanotubes: a micro-Raman study, Solid State Ionics, 2000, vols. 136–137, p. 1295. https://doi.org/10.1016/S0167-2738(00)00599-3

    Article  Google Scholar 

  5. Chemical Power Sources: A Handbook (in Russian), Korovin, N.V. and Skundin, A.M., Eds., Moscow: Mosk. Energ. Inst., 2003.

    Google Scholar 

  6. Wang, G., Yu, M., and Feng, X., Carbon materials for ion-intercalation involved rechargeable battery technologies, Chem. Soc. Rev., 2021, vol. 50, 2388. https://doi.org/10.1039/d0cs00187b

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, B., Ran, R., Liu, M., and Shao, Z., A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives, Mater. Sci. Engng. R.: Reports, 2015, vol. 98, p. 1. doi.org/https://doi.org/10.1016/j.mser.2015.10.001

    Article  Google Scholar 

  8. Moshtev, R.V., Zlatilova, P., Puresheva, B., and Manev, V., Material balance of petroleum coke/LiNiO2 lithium-ion cells, J. Power Sources, 1995, vol. 56, p. 137. https://doi.org/10.1016/j.mser.2015.10.001

    Article  CAS  Google Scholar 

  9. Churikov, A.V., Gridina, N.A., Churikova, N.V., Solopova, T.A., Forostyanyj, S.A., and Levin, F.Yu., Development of carbon material for negative electrode of lithium-ion battery, Elektrohim. Energetika (in Russian), 2001, vol. 1, p. 9.

    Google Scholar 

  10. Alkántara, R., Lavela, P., Ortiz, G.F., Tirado, J.L., Stoyanova, R., Zhecheva, E., and Jiménez-Mateos, J.M., Modification of Petroleum Coke for Lithium-Ion Batteries by Heat-Treatment with Iron Oxide, J. Electrochem. Soc., 2004, vol. 151, p. A2113. https://doi.org/10.1149/1.1814031

    Article  CAS  Google Scholar 

  11. Concheso, A., Santamaría, R., Menéndez, R., Jiménez-Mateos, J.M., Alcántara, R., Ortiz, G.F., Lavla, P., and Tirado, J.L., Effect of oxidation on the performance of low-temperature petroleum cokes as anodes in lithium ion batteries, J. Appl. Electrochem., 2009, vol. 39, p. 899. https://doi.org/10.1007/s10800-008-9735-8

    Article  CAS  Google Scholar 

  12. Chudova, N.V., Shakirova, N.V., Kuzmina, E.V., and Kolosnitsyn, V.S., Influence of the range of charge and discharge potentials on the electrochemical capacity of petroleum coke and graphite, Bashkirskii khimicheskii zhurnal (in Russian), 2021, vol. 28, p. 85. https://doi.org/10.17122/bcj?20214-85-89

  13. Li, W., Li, Z., Zhang, C., Liu, W., Han, C., Yan, B., An, S., and Qiu, X., Hard carbon derived from rice husk as anode material for high performance potassium-ion batteries, Solid State Ionics, 2020, vol. 351, 115319. https://doi.org/10.1016/j.ssi.2020.115319

    Article  CAS  Google Scholar 

  14. Kuzmina, E.V., Dmitrieva, L.R., Karaseva, E.V., and Kolosnitsyn, V.S., On the possibility of application of the method of sorption of dyes for determining the specific surface area of carbon materials for lithium-sulfur batteries, Izvestiya Ufimskogo nauchnogo Tsentra RAN (in Russian), 2020, p. 29.] https://doi.org/10.31040/2222-8349-2020-0-2-29-34

  15. Lewandowski, A., Biegun, M., Galinski, M., and Swiderska-Mocek, A., Kinetic analysis of Li|Li+ interphase in an ionic liquid electrolyte, J. Appl. Electrochem., 2012, vol. 43, p. 367. https://doi.org/10.1007/s10800-012-0515-0

    Article  CAS  Google Scholar 

  16. Rui, X.H., Ding, N., Liu, J., Li, C., and Chen, C.H., Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material, Electrochim. Acta, 2010, vol. 55, p. 2384. https://doi.org/10.1016/j.electacta.2009.11.096

    Article  CAS  Google Scholar 

  17. Kaspar, J., Graczyk-Zajac, M., and Riedel, R., Determination of the chemical diffusion coefficient of Li-ions in carbon-rich silicon oxycarbide anodes by electro-analytical methods, Electrochim. Acta, 2014, vol. 115, p. 665. https://doi.org/10.1016/j.electacta.2013.10.184

    Article  CAS  Google Scholar 

  18. Vedalakshmi, R., Saraswathy, V., Song, H.-W., and Palaniswamy, N., Determination of diffusion coefficient of chloride in concrete using Warburg diffusion coefficient, Corr. Sci., 2009, vol. 51, p. 1299. https://doi.org/10.1016/j.corsci.2009.03.017

    Article  CAS  Google Scholar 

  19. Ivanishchev, A.V. and Ivanishcheva, I.A., Ion transport in lithium electrochemical systems: problems and solutions, Russ. J. Electrochem., 2020, vol. 56, p. 907. https://doi.org/10.1134/S1023193520100055

  20. Fong, R., von Sacken, U., and Dahn, J.R., Studies of lithium intercalation into carbons using nonaqueous electrochemical cells, J. Electrochem. Soc., 1997, vol. 144, p. 1195. https://doi.org/10.1149/1.2086855

    Article  Google Scholar 

  21. Weibing, X. and Dahn, J.R., Study of Irreversible capacities for Li insertion in hard and graphitic carbons, J. Electrochem. Soc., 1997, vol. 144, p. 1195. https://doi.org/10.1149/1.1837572

    Article  Google Scholar 

  22. Peled, E., Golodnitsky, D., Ulus, A., and Yufit, V., Effect of carbon substrate on SEI composition and morphology, Electrochim. Acta, vol. 50, p. 391. https://doi.org/10.1016/j.electacta.2004.01.130

Download references

Funding

This work is carried out according to State contract: topic no. 121111900148-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kuzmina.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

CONTRIBUTION OF AUTHORS

E.V. Kuzmina and V.S. Kolosnitsyn suggested and developed the experiment. N.V. Chudova synthesized the samples and studied their electrochemical behavior. E.V. Kuzmina carried out the acid–base titration and determination of the surface area by the Methyl Orange dye sorption. All authors took part in the discussion of the results.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmina, E.V., Chudova, N.V. & Kolosnitsyn, V.S. Effect of Current Density on Specific Characteristics of Negative Electrodes for Lithium-Ion Batteries Based on Heat-Treated Petroleum Coke. Russ J Electrochem 59, 153–161 (2023). https://doi.org/10.1134/S1023193523020064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523020064

Keywords:

Navigation