Skip to main content
Log in

The Electrophoretic Deposition of Lithium Cobaltate Nanosized Particles on the Surface of Metals and Electroconductive Oxide Ceramics

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The deposition of LiCoO2 nanosized particles synthesized in LiCl–CoCl2 melts on the surface of nickel foil, copper, chrome–cobalt alloy, and platinum mesh in aqueous solutions of lithium chloride at the room temperature as well as on the surface of the electron-conducting La0.6Sr0.4MnO3 oxide ceramics in chloride melt at temperature of ca. 700°C is studied. The methods of vibrational spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, and scanning electron microscopy have revealed the features of the chemical composition, structure, and morphology of the precipitates obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. Makhonina, E.V., Pervov, V.S., and Dubasova, V.S., Oxide materials as positive electrodes of lithium-ion batteries, Russ. Chem. Rev., 2004, vol. 73, p. 991.

    Article  CAS  Google Scholar 

  2. Bensalah, N. and Dawood, H., Review on Synthesis, Characterizations, and Electrochemical Properties of Cathode Materials for Lithium-Ion Batteries, J. Material Sci. Eng., 2016, vol. 5, p. 258.

    Google Scholar 

  3. Pang, H., Cao, X., Zhu, L., and Zheng, M., Synthesis of Functional Nanomaterials for Electrochemical Energy Storage, Singapore: Springer Nature Singapore Pte, 2020.

    Book  Google Scholar 

  4. Lithium-ion Batteries—Thin Film for Energy Materials and Devices, Sato, M., Lu, L., and Nagai, H., Eds., London: InTechOpen, 2020.

  5. Wu, J., Yang, S., Cai, W., Bi, Z., Syang, G., and Yao, J., Multi-characterization of LiCoO2 cathode films using advanced AFM-based techniques with high resolution, Sci. Reports, 2017, vol. 7, 11164.

    Google Scholar 

  6. Ohta, N., Takada, K., Sakaguchi, I., Zhang, L., Ma, R., Fukuda, K., Osada, M., and Sasaki, T., LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries, Electrochem. Comm., 2007, vol. 9, p. 1486.

    Article  CAS  Google Scholar 

  7. Yu, H., Holtz, M.E., Gong, Y., Pearson, J., Ren, Y., Herzing, A.A., Zhang, X., and Takeuchi, I., Nonvolatile multilevel switching in artificial synaptic transistors based on epitaxial LiCoO2 thin films, Phys. Rev. Mater., 2021, vol. 5, 115401.

    Article  CAS  Google Scholar 

  8. Kawashima, K., Ohnishi, T., and Takada, K., High-Rate Capability of LiCoO2 Cathodes, ACS Appl. Energy Mater., 2020, vol. 3, no. 12, p. 11803.

    CAS  Google Scholar 

  9. Orikasa, Y., Takamatsu, D., Yamamoto, K., Koyama, Y., Mori, S., Masese, T., Mori, T., Minato, T., Tanida, H., Uruga, T., Ogumi, Z., and Uchimoto, Y., Origin of the Surface Coating Effect of MgO on LiCoO2 to Improve the Interfacial Reaction between Electrode and Electrolyte, Adv. Mat. Interfaces, 2014, vol. 1, no. 9, 00195.

    Google Scholar 

  10. Inamoto, J., Fukutsuka, T., Miyazaki, K., and Abe, T., Insight into the state of the ZrO2 coating on a LiCoO2 thin-film electrode using the ferrocene redox reaction, J. Appl. Electrochem., 2017, vol. 47, no. 11, p. 1.

    Article  Google Scholar 

  11. Oh, Y., Ahn, D., Nam, S., and Park, B., The effect of Al2O3-coating coverage on the electrochemical properties in LiCoO2 thin films, J. Solid State Electrochem., 2009, vol. 14, no. 7, p. 1235.

    Article  Google Scholar 

  12. Yan, B., Liu, J., Song, B., Xiao, P., and Lu, L., Li-rich Thin Film Cathode Prepared by Pulsed Laser Deposition, Sci. Reports, 2013, vol. 3, 3332.

    Google Scholar 

  13. Ohnishi, T., Hang, B.T., Xu, X., Osada, M., and Takada, K., Quality control of epitaxial LiCoO2 thin films grown by pulsed laser deposition, J. Mater. Res., 2010, vol. 25, no. 10, p. 1886.

    Article  CAS  Google Scholar 

  14. Iriyama, Y., Inaba, M., Abe, T., and Ogumi Z., Preparation of c-axis oriented thin films of LiCoO2 by pulsed laser deposition and their electrochemical properties, J. Power Sources, 2001, vol. 94, p. 175.

    Article  CAS  Google Scholar 

  15. Kosuri, Y.R., Penki, T.R., Nookala, M., Morgen, P., and Gowravaram, M.R., Investigations on Sputter Deposited LiCoO2 Thin Films from Powder Target, Adv. Mat. Lett., 2013, vol. 4, no. 8, p. 615.

    Google Scholar 

  16. Yoon, M., Lee, S., Lee, D., Kim, J., and Moon, J., All-solid-state thin film battery based on well-aligned slanted LiCoO2 nanowires fabricated by glancing angle deposition, Appl. Surf. Sci., 2017, vol. 412, p. 537.

    Article  CAS  Google Scholar 

  17. Julien, C.M., Mauger, A., and Hussain, O.M., Sputtered LiCoO2 Cathode Materials for All-Solid-State Thin-Film Lithium Microbatteries, Materials, 2019, vol. 12, no. 17, 2687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, C., Kelder, E.M., van der Put, P.J.J.M., and Schoonman, J., Morphology control of thin LiCoO2 films fabricated using the electrostatic spray deposition (ESD) technique, J. Mater. Chem., 1996, vol. 6, p. 765.

    Article  CAS  Google Scholar 

  19. Taniguchi, I. and Nishino, T., Surface Morphology and Electrochemical Properties of LiCoO2 Thin Films Synthesized by Electrostatic Spray Deposition Method, Kagaku Kogaku Ronbunshu, 2003, vol. 29, no. 2, p. 226.

    Article  CAS  Google Scholar 

  20. Donders, M.E., ArnoldBik, W.M., Knoops, H.C.M., Kessels, W.M.M., and Notten, P.H.L., Atomic layer deposition of LiCoO2 thin film electrodes for all-solid-state Li-ion micro-batteries. J. Electrochem. Soc., 2013, vol. 160, no. 5, p. A3066.

    Article  CAS  Google Scholar 

  21. Yuji, H.Y. and Goto, T., Orientation and Morphology of LiCoO2 Prepared by Chemical Vapor Deposition on Al2O3 Single Crystal, Key Eng. Mater., 2012, vol. 508, p. 300.

    Article  Google Scholar 

  22. Maruyama, S., Kubokawa, O., Nanbu, K., Fujimoto, K., and Matsumoto, Y., Combinatorial Synthesis of Epitaxial LiCoO2 Thin Films on SrTiO3(001) via On-Substrate Sintering of Li2CO3 and CoO by Pulsed Laser Deposition, ACS Comb. Sci., 2016, vol. 18, no. 6, p. 343.

    Article  CAS  PubMed  Google Scholar 

  23. Goto, A., Hamagami, J.I., Kanamura, K., and Umegaki, T., Electrophoretic Deposition (EPD), LiCoO2, Lithium-Ion Battery, Key Eng. Mater., 2000, vols. 181–182, p. 159.

    Article  Google Scholar 

  24. Kanamura, K., Goto, A., Rho, Y.H., and Umegaki, T., Electrophoretic fabrication of LiCoO2 positive electrodes for rechargeable lithium batteries, J. Power Sources, 2001, vol. 97, p. 294.

    Article  Google Scholar 

  25. Esper, J.D., Helmer, A., Wu, Y., Bachmann, J., and Klupp Taylor, R.N., Electrophoretic Deposition of Out-of-Plane Oriented Active Material for Lithium-Ion Batteries, Energy Technol., 2021, vol. 9, no. 4, 2000936.

    Article  CAS  Google Scholar 

  26. Miyazaki, H., Mimaru, Y., Makinose, Y., Tsuji, T., Yamada, H., and Mutai, T., Improvement of the Cycle Property of Binder-Free LiCoO2 Positive Electrode Film Deposited via the Pulsed Electrophoretic Deposition, Mater. Trans., 2019, vol. 60, no. 12, p. 2576.

    Article  CAS  Google Scholar 

  27. Caballero, A., Herna’n, L., Melero, M., Morales, J., Moreno, R., and Ferrari B., LiNi0.5Mn1.5O4 thick-film electrodes prepared by electrophoretic deposition for use in high voltage lithium-ion batteries, J. Power Sources, 2006, vol. 158, p. 583.

    Article  CAS  Google Scholar 

  28. Sarkar, P. and Nicholson, P.S., Electrophoretic Deposition (EPD): Mechanisms, Kimeshics, and Application to Ceramics, J. Amer. Ceram. Soc., 1996, vol. 79, no. 8, p. 1987.

    Article  CAS  Google Scholar 

  29. Van der Biest, O. and Vandeperre, L., Electrophoretic Deposition of Materials, Ann. Rev. Mater. Sci., 1999, vol. 29, p. 327.

    Article  CAS  Google Scholar 

  30. Besra, L. and Liu, M., A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci., 2007, vol. 52, p. 1.

    Article  CAS  Google Scholar 

  31. Corni, I., Ryan, M.P., and Boccaccin, A.R., Electrophoretic deposition: From traditional ceramics to nanotechnology, J. Eur. Ceram. Soc., 2008, vol. 28, p. 1353.

    Article  CAS  Google Scholar 

  32. Hong, Y.S., Han, C.H., and Kim, K., Preparation of polycrystalline HT-LiCoO2 using molten salt synthesis method at 280°C, Chem. Lett., 2000, vol. 29, no. 12, p. 1384.

    Article  Google Scholar 

  33. Liang, H., Qiu, X., Zhang, S., He, Z., Zhu, W., and Chen, L., High performance lithium cobalt oxides prepared in molten KCl for rechargeable lithium-ion batteries, Electrochem. Commun., 2004, vol. 6, no. 5, p. 505.

    Article  CAS  Google Scholar 

  34. Liang, H., Qiu, X., Chen, H., He, Z., Zhu, W., and Chen, L., Analysis of high rate performance of nanoparticled lithium cobalt oxides prepared in molten KNO3 for rechargeable lithium-ion batteries, Electrochem. Commun. 2004, vol. 6, p. 789.

    Article  CAS  Google Scholar 

  35. Tan, K.S., Reddy, M.V., Subba Rao, G.V., and Chowdari, B.V.R., High-performance LiCoO2 by molten salt (LiNO3:LiCl) synthesis for Li-ion batteries, J. Power Sources, 2005, vol. 147, nos. 1–2, p. 241.

    Article  CAS  Google Scholar 

  36. Fu, J., Bai, Y., Liu, C., Yu, H., and Mo, Y., Physical characteristic study of LiCoO2 prepared by molten salt synthesis method in 550–800°C, Mater. Chem. Phys., 2009, vol. 115, no. 1, p. 105.

    Article  CAS  Google Scholar 

  37. Kim, J.H., Myung, S.T., and Sun, Y.K., Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery, Electrochim. Acta, 2004, vol. 49, no. 2, p. 219.

    Article  CAS  Google Scholar 

  38. Kumagai, N., Oshitari, S., Komaba, S., and Kadoma, Y., Synthesis of hollandite-type LiyMn1 – xCoxO2 (x = 0–0.15) by Li+ ion-exchange in molten salt and the electrochemical property for rechargeable lithium battery electrodes, J. Power Sources, 2007, vol. 174, no 2, p. 932.

    Article  CAS  Google Scholar 

  39. Han, C.-H., Hong, Y.-S., Park, C.M., and Kim, K., Synthesis and electrochemical properties of lithium cobalt oxides prepared by molten-salt synthesis using the eutectic mixture of LiCl–Li2CO3, J. Power Sources, 2001, vol. 192, p. 95.

    Article  Google Scholar 

  40. Han, C.-H., Hong, Y.-S., Kang, E.-J., Shin, J.-S., and Kim, K., Synthesis and Electrochemical Properties of HT-LiCo0.8Ni0.2O2 Prepared by Molten Salt Synthesis Method using 0.59LiNO3–0.41LiOH System, Korean J. Chem. Eng., 2001, vol. 18, no. 5, p. 765.

    Article  CAS  Google Scholar 

  41. Khokhlov, V., Modenov, D., Dokutovich, V., Kochedykov, V., Zakir’yanova, I., Vovkotrub, E., and Beketov, I., Lithium oxide solution in chloride melts as a medium to prepare LiCoO2 nanoparticles, MRS Commun., 2014, vol. 4, p. 15.

    Article  CAS  Google Scholar 

  42. Hara, K., Yano, T., Suzuki, K., Hirayama, M., Hayashi, T., Kanno, R., and Hara, M., Raman Imaging Analysis of Local Crystal Structures in LiCoO2 Thin Films Calcined at Different Temperatures, Anal. Sci., 2017, vol. 33, p. 853.

    Article  CAS  PubMed  Google Scholar 

  43. Freitas, B.G.A., Siqueira, Jr. J.M., da Costa, L.M., Ferreira, G.B., and Resende, J.A.L.C., Synthesis and Characterization of LiCoO2 from Different Precursors by Sol–Gel Method, J. Brazil. Chem. Soc., 2017, vol. 28, no. 11, p. 2254.

    CAS  Google Scholar 

  44. Julien, C., Local cationic environment in lithium nickel–cobalt oxides used as cathode materials for lithium batteries, Solid State Ionics, 2000, vols. 136–137, p. 887.

    Article  Google Scholar 

  45. Rao, M.C. and Hussain, O.M., Spectroscopic investigations on tetravalent doped LiCoO2 thin film cathodes, Eur. Phys. J.-Appl. Phys., 2009, vol. 48, 20503.

    Article  Google Scholar 

  46. Yang, W.-D., Hsieh, C.-Y., Chuang, H.-Jan., and Chen, Y.-S., Preparation and characterization of nanometric-sized LiCoO2 cathode materials for lithium batteries by a novel sol–gel method, Ceram. Int., 2010, vol. 36, p. 135.

    Article  CAS  Google Scholar 

  47. He, Z. and Alexandridis, P., Nanoparticles in ionic liquids: interactions and organization, Phys. Chem. Chem. Phys., 2015, vol. 17, 18238.

    Article  CAS  PubMed  Google Scholar 

  48. Xu, Y., Ding, L., Zhong, T., Han, X., Jiao, L., Yuan, H., and Wang, Y., Novel application of LiCoO2 as a high-performance candidate material for supercapacitor, J. Energy Chem., 2015, vol. 24, p. 193.

    Article  Google Scholar 

  49. Mironova-Ulmane, N., Kuzmin, A., Sildos, I., Puust, L., and Grabis, J., Magnon and Phonon Excitations in Nanosized NiO, Latvian J. Phys. Tech. Sci., 2019, vol. 56, no. 2, p. 61.

    Article  CAS  Google Scholar 

  50. Debbichi, L., Marco de Lucas, M.C., Pierson, J.F., and Krüger, P., Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared Spectroscopy, J. Phys. Chem. C, 2012, vol. 116, p. 10232

    Article  CAS  Google Scholar 

  51. Zoolfakar, A.S., Rani, R.A., Morfa, A.J., O’Mullane, A.P., and Kalantar-zadeh, K., Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications, J. Mat. Chem. C, 2014, vol. 2, p. 27.

    Google Scholar 

  52. Graham, G.W., Weber, W.H., McBride, J.R., and Peters, C.R., Raman Investigation of Simple and Complex Oxides of Platinum, J. Raman Spectrosc., 1991, vol. 22, p. 1

    Article  CAS  Google Scholar 

  53. Hadjiev, V.G., Iliev, M.N., and Vergilov, I.V., The Raman spectra of Co3O4, J. Phys. C: Solid State, 1988, vol. 21, p. L199.

    Article  Google Scholar 

  54. Azzam, R.M.A. and Bashara, N.M., Ellipsometry and Polarized Light, Amsterdam: North-Holland, 1987.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to Dr. O.V. Koryakova (Institute of Organic Synthesis, Ural Division, RAS) for the analyzing of lithium cobaltate film by the frustrated total internal reflection method, Dr. A.V. Druzhinin (Institute of Metal Physics, Ural Division, RAS) for the plasma-evaporated metal electrodes, and Dr.Sc. D.A. Osinkin (Institute of High-Temperature Electrochemistry, Ural Division, RAS) for provision of oxide-ceramics electrode for our studies.

The study is carried out with the using of equipment of the Research Equipment Sharing Center “Substance composition” of the Institute of High-Temperature Electrochemistry, Ural Division, RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Khokhlov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

The article was prepared for a special issue of the journal dedicated to the memory of the outstanding electrochemist Oleg Aleksandrovich Petriy (1937–2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khokhlov, V.A., Modenov, D.V., Dokutovich, V.N. et al. The Electrophoretic Deposition of Lithium Cobaltate Nanosized Particles on the Surface of Metals and Electroconductive Oxide Ceramics. Russ J Electrochem 59, 105–115 (2023). https://doi.org/10.1134/S1023193523020052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523020052

Keywords:

Navigation