Skip to main content
Log in

Electrooxidation of Methanol on Pt, Ru, and Metal Oxides Nanoparticles Modified with Polyaniline-Carbon Nanotube Hybrid Electrodes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Direct methanol fuel cells (DMFCs), as an important alternative energy source for portable devices, have attracted considerable interest because of the high energy density of methanol, the simplicity of processing it as a fuel, and the suitability of storage as a liquid fuel. Nevertheless, fuel cell catalysts suffer from strong adsorption of CO on platinum, which leads to poison on the catalyst’s surface and the prevention of further oxidation of methanol. Improvements are needed in terms of lowering the number of precious metals required for large-scale applications. Carbon powder, carbon nanotubes, and conducting polymer matrix are shown to have high electrocatalytic performance. Consequently, platinum loading has been diminished pointedly with improved Pt utilization. In this sense, particularly in the current study, the electrooxidation of methanol was investigated on Pt, Ru, and metal oxide nanoparticles such as V2O5 and WO3, modified by polyaniline (PANI)-functionalized multi-wall carbon nanotubes (fCNTs) composite electrodes in terms of DMFCs and related applications. Only electrochemical techniques were utilized throughout the synthesis of electrodes. The citrate method was utilized for preparing all of the metal and metal oxide nanoparticles. A comparative study was realized in each step of the experimental study. It was seen that ternary alloy nanosized electrodes showed much more activity than those of mono or bimetallic systems. The prepared electrodes were viewed and analyzed by SEM, EDX, Raman, and TEM techniques. Moreover, kinetic studies were carried out to determine important parameters. As a concluding remark, the current research presents a highly feasible procedure to produce PANI–fCNTs/Pt–Ru–metal oxide nanoparticle composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. Bockris, J.O’.M. and Reddy, A.K.N., Modern Electrochemistry, New York: Plenium Press, 1992, p. 1141.

    Google Scholar 

  2. Watanabe, W. and Uchida, H., Handbook of Fuel Cells, Advances in Electrocatalysis, Materials, Diagnostics and Durability, Wiley, 2009, vols. 5-6.

    Google Scholar 

  3. Parsons, R., and VanderNoot, T., The oxidation of small organic molecules: a survey of recent fuel cell-related research, J. Electroanal. Chem. Interfacial Chem., 1988, vol. 257, no. 1-2, p. 9.

    Article  CAS  Google Scholar 

  4. Arico, A.S., Srinivasan, S., and Antonucci, V., DMFCs: from Fundamentals Aspects to Technology Development, Fuel Cells, Wiley, 2001, vol. 1, no. 2, p. 133.

    Article  CAS  Google Scholar 

  5. Iwasita, T., Electrocatalysis of methanol oxidation, Electrochim. Acta, 2002, vol. 47, no. 22, p. 3663.

    Article  CAS  Google Scholar 

  6. Skotheim, T.A., Handbook of Conducting Polymers, New York: Marcel Dekker, 1985, p. 327.

    Google Scholar 

  7. Dutta, K., Kumar, P., Das, P., and Kundu, P.P., Utilization of conducting polymers in fabricating polymer electrolyte membranes for application in direct methanol fuel cells, Polym. Rev., 2014, vol. 54, no. 1, p. 1.

    Article  CAS  Google Scholar 

  8. Macdiarmid, A.G., Chiang, J.C., Richter, A.F., and Epstein, A.J., Polyaniline: a new concept in conducting polymers, Synt. Met., 1987, vol. 18, no. 1, p. 285.

    Article  CAS  Google Scholar 

  9. Gospodinova, N. and Terlemezyan, L., Conducting polymers prepared by oxidative polymerization: polyaniline, Progr. Polym. Sci., 1998, vol. 23, no. 8, p. 1443.

    Article  CAS  Google Scholar 

  10. Balasubramanian, K. and Burghard, M., Chemically functionalized carbon nanotubes, Small, 2005, vol. 1, no. 2, p. 180.

    Article  CAS  PubMed  Google Scholar 

  11. Lu, X., Zhang, W., Wang, C., Wen, T.-C., and Wei, Y., One-dimensional conducting polymer nanocomposites: synthesis, properties, and applications, Progr. Polym. Sci., 2011, vol. 36, p. 671.

    Article  CAS  Google Scholar 

  12. Juttner, K., Mangold, K.-M., Lange, M., and Bouzek, K., Preparation and properties of composite polypyrrole/Pt catalyst systems, Russ. J. Electrochem., 2004, vol. 40, p. 317.

    Article  Google Scholar 

  13. Mikhaylova, A.A., Tusseeva, E.K., Rychagov, A.Yu., Vol’fkovich, Yu.M., Krestinin, A.V., and Khazova, O.A., The carbon nanotubes-polyaniline composites and their effect on catalytic properties of deposited catalysis, Russ. J. Electrochem., 2010, vol. 46, p. 1280.

    Article  CAS  Google Scholar 

  14. Oueiny, C., Berlioz, S., and Perrin, F.-X., Carbon nanotube-polyaniline composites, Progr. Polym. Sci., 2014, vol. 29, p. 707.

    Article  Google Scholar 

  15. Wu, T.-M., Lin, Y.-W., and Liao, C.-S., Preparation and characterization of polyaniline/ multi-walled carbon nanotube composites, Carbon, 2005, vol. 43, p. 734.

    Article  CAS  Google Scholar 

  16. Shi, J., Wang, Z., and Li, H.-L., Electrochemical fabrication of polyaniline/multi-walled carbon nanotube composite films for electrooxidation of methanol, J. Mater. Sci., 2007, vol. 42, p. 539.

    Article  CAS  Google Scholar 

  17. Huang, J.-E., Li, X.-H., Xu, J.-C., and Li, H.-L., Well-dispersed single-walled carbon nanotube/polyaniline composite films, Carbon, 2003, vol. 41, no. 14, p. 2731.

    Article  CAS  Google Scholar 

  18. Sahoo, N.G., Rana, S., Cho, J.W., Li, L., and Chan, S.H., Polymer nanocomposites based on functionalized carbon nanotubes, Progr. Polym. Sci., 2010, vol. 35, no. 7, p. 837.

    Article  CAS  Google Scholar 

  19. He, D., Zeng, C., Xu, C., Cheng, N., Li, H., Mu, S., and Pan, M., Polyaniline-functionalized carbon nanotube supported platinum catalysts, Langmuir, 2011, vol. 27, no. 9, p. 5582.

    Article  CAS  PubMed  Google Scholar 

  20. Zengin, H., Zhou, W., Jin, J., Czerw, R., Smith, D.W., Echegoyen, L., Carrol, D.L., Foulger, S.H., and Ballato, J., Carbon nanotube doped polyaniline, Adv. Mater., 2002, vol. 14, no. 20, p. 1480.

    Article  CAS  Google Scholar 

  21. Pandey, R.K. and Lakshminarayanan, V., Ethanol electrocatalysis on gold conducting polymer nanocomposites: a study of the kinetic parameters, Appl. Catal. B: Environ., 2012, vol. 125, p. 271.

    Article  CAS  Google Scholar 

  22. Lee, H.-Y., Vogel, W., and Chu, P.P.,-J., Nanostructure and surface composition of Pt and Ru binary catalysis on polyaniline-functionalized carbon nanotubes, Langmuir, 2011, vol. 27, p. 14654.

    Article  CAS  PubMed  Google Scholar 

  23. Kost, K.M., Bartak, D.E., Kazee, B., and Kuwana, T., Ruthenium promotion of platinum for the electrocatalytic oxidation of methanol, Anal. Chem., 1988, vol. 60, p. 2379.

    Article  CAS  Google Scholar 

  24. Becerik, I., Kadirgan, F., and Suzer, S., Electrooxidation of methanol on doped polypyrrole films in acidic media, J. Electroanal. Chem., 2001, vol. 502, p. 118.

    Article  CAS  Google Scholar 

  25. Liu, L., Pu, C., Viswanathan, R., Fan, Q., Liu, R., and Smotkin, E.S., Carbon supported and unsupported Pt‒Ru anodes for liquid feed direct methanol fuel cells, Electrochim. Acta, 1998, vol. 43, no.2 4, p. 3657.

  26. Selvaraj, V. and Alagar, M., Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation, Electrochem. Commun., 2007, vol. 9, no. 5, p. 1145.

    Article  CAS  Google Scholar 

  27. Yang, C., Wang, D., Hu, X., Dai, C., and Zhang, L., Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt–Ru catalyst for methanol electrooxidation, J. Alloys Compd., 2008, vol. 448, p. 109.

    Article  CAS  Google Scholar 

  28. Selveraj, V., Vinoba, M., and Alagar, M., Electrocatalytic oxidation of ethylene glycol on Pt and Pt–Ru nanoparticles modified multi-walled carbon nanotubes, J. Colloid-Interface Sci., 2008, vol. 322, no. 2, p. 537.

    Article  Google Scholar 

  29. Drew, K., Girishkumar, G., Vinodgopal, K., and Kamat, P.V., Boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt–Ru hybrid catalyst form ethanol oxidation, J. Phys. Chem. Lett. B, 2005, vol. 109, p. 11851.

    Article  CAS  Google Scholar 

  30. Lima, A., Coutanceau, C., Leger, J.-M., and Lamy, C., Investigation of ternary catalysts for methanol oxidation, J. Appl. Electrochem., 2001, vol. 31, no. 4, p. 379.

    Article  CAS  Google Scholar 

  31. Telli, E., Solmaz, R., and Kardaş, G., Electrocatalytic oxidation of methanol on Pt/NiZn electrode in alkaline medium, Russ. J. Electrochem., 2011, vol. 47, p. 811.

    Article  CAS  Google Scholar 

  32. Jayaraman, S., Jaramillo, T.F., Baeck, S.-H., and McFarland, E.W., Synthesis and characterization of Pt–WO3 as methanol oxidation catalyst for fuel cells, J. Phys. Chem. B, 2005, vol. 109, p. 22958.

    Article  CAS  PubMed  Google Scholar 

  33. Elezovic, N.R., Radmilovic, V.R., and Krstajic, N.V., Platinum nanocatalysts on metal oxide based supports for low-temperature fuel cell applications, R. Soc. Chem. B, 2016, vol. 6, no. 8, p. 6788.

    CAS  Google Scholar 

  34. Saha, M.S., Li, R., and Sun, X., Composite of Pt-Ru supported SnO2 nanowires grown on carbon paper for electrocatalytic oxidation of methanol, Electrochem. Commun., 2007, vol. 9, no. 9, p. 2229.

    Article  CAS  Google Scholar 

  35. Rajesh, B., Ravindranathan, T.K., Bonard, J.-M., Xanthapolous, N., Mathieu, H.J., and Viswanathan, B., Pt supported on polyaniline–V2O5 nanocomposite as the electrode material for methanol oxidation, Electrochem. Solid-State Lett., 2002, vol. 5, no. 12, p. E71.

    Article  CAS  Google Scholar 

  36. Guney, S., Becerik, I., and Kadirgan, F., Ru-WO3 promotion of Pt dispersed into poly(3-methyl) thiophene matrix towards the electrooxidation of methanol, Bull. Electrochem., 2004, vol. 20, no. 4, p. 157.

    Google Scholar 

  37. Hameed, R.M.A., Amin, R.S., El-Khatib, K.M., and Fetohi, A.E., Influence of metal oxides on platinum activity towards methanol oxidation in H2SO4, ChemPhys Chem., 2016, vol. 17, p. 1054.

    Article  CAS  Google Scholar 

  38. Lasch, K., Jörissen, L., and Garche, J., The effect of metal oxides as co-catalysts for the electro-oxidation of methanol on platinum-ruthenium, J. Power Sources, 1999, vol. 84, p. 225.

    Article  CAS  Google Scholar 

  39. Kulesza, P.J., Pieta, I.S., Rutkowska, I.A., Wadas, A., Marks, D., Klak, K., Stobinski, L., and Cox, J.A., Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides, Electrochim. Acta, 2013, vol. 110, no. 1, p. 474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miecznikowski, K., WO3 decorated carbon nanotube supported PtSn nanoparticles with enhanced activity towards electrochemical oxidation of ethylene glycol in direct alcohol fuel cells, Arab. J. Chem., 2020, vol. 13, no. 1, p. 1020.

    Article  CAS  Google Scholar 

  41. Nouralishahi, A., Khodadadi, A.A., Rashidi, A.M., and Mortazavi, Y., Vanadium oxide decorated carbon nanotubes as promising support of Pt nanoparticles for methanol electro-oxidation reaction, J. Colloid Interface Sci., 2013, vol. 393, p. 291.

    Article  CAS  PubMed  Google Scholar 

  42. Rao, G.R. and Umeshbabu, E., A vanadium(V) oxide nanorodpromoted platinum/reduced graphene oxide electrocatalyst for alcohol oxidation under acidic conditions, ChemPhys Chem, 2016, vol. 17, no. 21, p. 3524.

    Article  Google Scholar 

  43. Maiyalagan, T. and Khan, F.N., Electrochemical oxidation of methanol on Pt/V2O5–C composite catalysts, Catal. Commun., 2009, vol. 10, p. 433.

    Article  CAS  Google Scholar 

  44. Chen, X.-W., Zhu, Z., Havecher, M., Su, D.S., and Schlogl, R., Carbon nanotube-induced preparation of vanadium oxide nanorods: application as a catalyst for the partial oxidation of n-butane, Mater. Res. Bull., 2007, vol. 42, p. 354.

    Article  CAS  Google Scholar 

  45. Yan, Z., Li, F., Xie, J., and Miu, X., Hollow tungsten carbide/carbon sphere promoted platinum electrocatalyst for efficient methanol oxidation, R. Soc. Chem., 2015, vol. 5, no. 9, p. 6790.

    CAS  Google Scholar 

  46. Ganesan, R. and Lee, J.S., An electrocatalyst form ethanol oxidation based on tungsten trioxide microspheres and platinum, J. Power Sources, 2006, vol. 157, p. 217.

    Article  CAS  Google Scholar 

  47. Yang, C., van der Laak, N.K., Chan, K.-Y., and Zhang, X., Microwave-assisted microemulsion synthesis of carbon-supported Pt–WO3 nanoparticles as an electrocatalyst for methanol oxidation, Electrochim. Acta, 2012, vol. 75, no. 30, p. 262.

    Article  CAS  Google Scholar 

  48. Zhang, D.-Y., Ma, Z.-F., Wang, G., Kostantinov, K., Yuan, X., and Liu, H.-K., Electro-oxidation of ethanol on Pt–WO3/C electrocatalyst, Electrochem. Solid-State Lett., 2006, vol. 9, no. 9, p. A423.

    Article  CAS  Google Scholar 

  49. Tsang, K.-Y., Lee, T.-C., Ren, J., Chan, K.-Y., Wang, H., and Wang, H., Platinum tungsten oxide (Pt–WO3) nanoparticles: their preparation in glycol and electrocatalytic properties, J. Experim. Nanosci., 2006, vol. 1, no. 1, p. 113.

    Article  CAS  Google Scholar 

  50. Rahsepar, M., Pakshir, M., and Nikolaev, P., Tungsten carbide on directly grown multiwalled carbon nanotube as a co-catalyst for methanol oxidation, Appl. Catal. B: Environ., 2012, vol. 127, p. 265.

    Article  CAS  Google Scholar 

  51. Rajesh, B., Thampi, R.K., Bonard, J.-M., Mathieu, H.J., Xanthopoulos, N., and Viwanathan, B., Electronically conducting hybrid material as high-performance catalyst support for electrocatalytic application, J. Power Sources, 2005, vol. 141, no. 1, p. 35.

    Article  CAS  Google Scholar 

  52. Civelekoglu-Odabas, M. and Becerik, I., Nanosized composite electrodes based on polyaniline/carbon nanotubes towards methanol oxidation, Curr. Nanosci., 2019, vol. 15, no. 6, p. 654.

    Article  CAS  Google Scholar 

  53. Grace, A.N. and Pandian, K., Pt, Pt–Pd, Pt–Pd/Ru nanoparticles entrapped polyaniline electrodes: a potent electrocatalyst towards the oxidation of glycerol, Electrochem. Commun., 2006, vol. 8, p. 1340.

    Article  CAS  Google Scholar 

  54. Ficicioglu, F. and Kadirgan, F., Electrooxidation of ethylene glycol on a platinum doped polyaniline electrode, J. Electroanal. Chem., 1998, vol. 451, no. 1, p. 95.

    Article  CAS  Google Scholar 

  55. He, D., Zeng, C., Xu, C., Cheng, N., Li, H., Mu, S., and Pan, M., Polyaniline-functionalized carbon nanotube supported platinum catalysts, Langmuir, 2011, vol. 27, no. 9, p. 5582.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, K.-F., Guo, D.-J., Liu, X., Li, J., Li, H.-L., and Su, Z.-X., Vanadium oxide nanotubes as the support of Pd catalysts for methanol oxidation in alkaline solution, J. Power Source, 2006, vol. 162, p. 1077.

    Article  CAS  Google Scholar 

  57. Tseung, A.C.C. and Chen, K.Y., Hydrogen spill-over effect on Pt/WO3 anode catalysts, Catal. Today, 1997, vol. 38, p. 439.

    Article  CAS  Google Scholar 

  58. Anderson, B.A., Grantscharova, E., and Seong, S., Systematic theoretical study of alloys of platinum for enhanced methanol fuel cell performance, J. Electrochem. Soc., 1996, vol. 143, p. 2075.

    Article  CAS  Google Scholar 

  59. Kasamechonchung, P., Rahong, S., Pratontep, S., Fukaya, K., and Wanna, Y., Preparation and characterization of PANI/CNT/Pt hybrid materials, J. Microsc. Soc. Thailand, 2009, vol. 23, no. 1, p. 127.

    Google Scholar 

  60. Cochet, M., Maser, W.K., Benito, A.M., Callejas, M.A., Martinez, M.T., Benoit, J.-M., Schreiber, J., and Chauvet, O., Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerization and charge transfer through site-selective interaction, Chem. Commun., 2001, no. 16, p. 1450.

  61. Bergamaski, K., Pinheiro, A.L.N., Teixeira-Neto, E., and Nart, F.C., Nanoparticle size effects on methanol electrochemical oxidation carbon-supported platinum catalysts, J. Phys. Chem. B, 2006, vol. 110, no. 39, p. 19271.

    Article  CAS  PubMed  Google Scholar 

  62. Becerik, I., Ficicioglu, F., and Kadirgan, F., Effect of temperature on the electrooxidation of some organic molecules on Pt doped conducting polymer-coated electrodes, Turk. J. Chem., 1999, vol. 23, p. 353.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank firstly to The Research Fund of Istanbul Technical University (ITU) (Grant no: 37550), then NABİLTEM from Namık Kemal University, Tekirdag, Turkey for SEM, EDX and Raman Measurements, Prof. Dr. S. Turan from Anadolu University, Eskisehir, Turkey for TEM Measurements, and Prof.Dr.R.Artan from ITU for computer-based studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muge Civelekoglu-Odabas or Ipek Becerik.

Ethics declarations

The authors announce that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muge Civelekoglu-Odabas, Ipek Becerik Electrooxidation of Methanol on Pt, Ru, and Metal Oxides Nanoparticles Modified with Polyaniline-Carbon Nanotube Hybrid Electrodes. Russ J Electrochem 59, 140–152 (2023). https://doi.org/10.1134/S1023193523020039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523020039

Keywords:

Navigation