Skip to main content
Log in

Schiff Base Derived CoPO–CN for Electrocatalytic Oxygen Evolution, Urea Oxidation and Ascorbic Acid Sensing

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The development of multifunctional electrocatalytic materials for energy storage, conversion and electrochemical sensing with the characteristics of low cost, high catalytic activity, and high stability has far-reaching significance. In recent years, Schiff base complexes have become the preferred materials for electrochemical research interests because of their special structure and the multiple active sites on the surface. However, there are few studies on Schiff base catalysts for the multifunctional application, especially in electrochemical detection. In this paper, cobalt Schiff base complex was synthesized by solution precipitation method and then was phosphorized to obtain the multifunctional catalyst denoted as CoPO–CN. The electrocatalytic activity was measured in the presence and absence of urea alkaline solution, and the results showed that the onset potential for urea oxidation reaction (UOR) and oxygen evolution reaction (OER) were 1.35 and 1.52 V versus reversible hydrogen electrode (vs. RHE), respectively. The electrochemical sensing performance for ascorbic acid (AA) indicated that the detection sensitivity was 217.2 μA mM–1 cm–2, and the detection limit was 3.84 μM. Our work creatively used the phosphorized cobalt Schiff base for multifunctional application, not only providing new insights for the multifunctional application of Schiff base catalyst in energy conversion, but also pointing a new method for detecting small biomolecules, especially ascorbic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Holladay, J.D., Hu, J., King, D.L., and Wang, Y., An overview of hydrogen production technologies, Catal. Today, 2009, vol. 139, p. 244.

    Article  CAS  Google Scholar 

  2. Suen, N.T., Hung, S.F., Quan, Q., Zhang, N., Xu, Y., and Chen, H., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chem. Soc. Rev., 2017, vol. 46, p. 337.

    Article  CAS  PubMed  Google Scholar 

  3. Wang, C., Lu, H., Mao, Z., Yan, C., Shen, G., and Wang, X., Bimetal Schottky heterojunction boosting energy-saving hydrogen production from alkaline water via urea electrocatalysis, Adv. Funct. Mater., 2020, vol. 30, p. 2000556.

    Article  CAS  Google Scholar 

  4. Boggs, B.K., King, R.L., and Botte, G.G., Urea electrolysis: direct hydrogen production from urine, Chem. Commun., 2009, vol. 22, p. 4859.

    Article  Google Scholar 

  5. Song, M., Zhang, Z., Li, Q., Jin, W., Wu, Z., Fu, G., and Liu, X., Ni-foam supported Co(OH)F and Co–P nanoarrays for energy-efficient hydrogen production via urea electrolysis, J. Mater. Chem. A, 2019, vol. 7, p. 3697.

    Article  CAS  Google Scholar 

  6. Zhu, W., Ren, M., Hu, N., Zhang, W., Zheng, T., Wang, R., Wang, J., Huang, L., Suo, Y., and Wang, J., Traditional NiCo2S4 phase with porous nanosheets array topology on carbon cloth: a flexible, versatile and fabulous electrocatalyst for overall water and urea electrolysis, ACS Sustain. Chem. Eng., 2018,vol. 6, p. 5011.

    Article  CAS  Google Scholar 

  7. Sengupta, S., Khan, S., Naath, M.B., Lewis, W., Fleck, M., Chattopadhyay, S.K., and Naskar, S., Electrocatalytic hydrogen production and carbon dioxide conversion by earth abundant transition metal complexes of the Schiff base ligand: (E)-1-((2-dimethylamino)-propylimino) methyl) naphthalene-2-ol, Polyhedron, 2020, vol. 191, p. 114798.

    Article  CAS  Google Scholar 

  8. Erica, N.O., Maria, F.M.R., Juliana, M.T.K., Mariane, C.T., Marco, A.B., Lzabel, C.E., Juliana, M., Alex, S.C., Ricardo, S.M.S., Jose, W., Edward, R.D., and Marcelo, F.O., Electrochemical sensors containing Schiff bases and their transition metal complexes to detect analytes of forensic, pharmaceutical and environmental interest. A review, Crit. Rev. Anal. Chem., 2019, vol. 49, p. 488.

    Article  Google Scholar 

  9. Asadizadeh, S., Amirnasr, M., Meghdadi, S., Fadaei, T.F., and Schenk, K., Facile synthesis of Co3O4 nanoparticles from a novel tetranuclear cobalt(III) complex. Application as efficient electrocatalyst for oxygen evolution reaction in alkaline media, Int. J. Hydrogen. Energy, 2018, vol. 43, p. 4922.

    Article  CAS  Google Scholar 

  10. Gao, C., Zhu, H., Chen, J., and Qiu, H., Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H2O2 and ascorbic acid, Chin. Chem. Lett., 2017, vol. 28, p. 1006.

    Article  CAS  Google Scholar 

  11. Yang, C., Denno, M.E., Pyakurel, P., and Venton, B.J., Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review, Anal. Chim. Acta, 2015, vol. 887, p. 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, L., Liu, D., Huang, J., and You, T., Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode, Sens. Actuators B: Chem., 2014, vol. 193, p. 166.

    Article  CAS  Google Scholar 

  13. Kumar, S., Ahlawat, W., Kumar, R., and Dilbaghi, N., Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare, Biosens. Bioelectron., 2015, vol. 70, p. 498.

    Article  CAS  PubMed  Google Scholar 

  14. Yu, L., Zhao, J., Tricard, S., Wang, Q., and Fang, J., Efficient detection of ascorbic acid utilizing molybdenum oxide@Prussian blue/graphite felt composite electrodes, Electrochim. Acta, 2019, vol. 322, p. 134712.

    Article  CAS  Google Scholar 

  15. Gao, J., He, P., Yang, T., Zhou, L., Wang, X., Chen, S., Lei, H., Zhang, H., Jia, B., and Liu, J., Electrodeposited NiO/graphene oxide nanocomposite: an enhanced voltammetric sensing platform for highly sensitive detection of uric acid, dopamine and ascorbic acid, J. Electroanal. Chem., 2019, vol. 852, p. 113516.

    Article  CAS  Google Scholar 

  16. Subramanian, S., Thangavelu, K., Chen, S., Chen, T., Tseng, T., Liu, X., and Liu, W., A highly selective and sensitive detection of ellagic acid by using ethylenediamine ligand based cobalt(II) complex modified glassy carbon electrode, Int. J. Electrochem. Sci., 2017, vol. 12, p. 6829.

    Google Scholar 

  17. Liu, Y., Lin, H., Xu, N., and Wang, X., Two cobalt coordination polymers constructed from a flexible bis (pyridyl-tetrazole) and different tricarboxylates as electrocatalytic materials for the determination of ascorbic acid, Polyhedron, 2020, vol. 179, p. 114358.

    Article  CAS  Google Scholar 

  18. Moyo, P., Mugadza, T., Mehlana, G., and Guyo, U., Synthesis and characterization of activated carbon-ethylenediamine-cobalt(II) tetracarboxyphthalocyanine conjugate for catalytic oxidation of ascorbic acid, Res. Chem. Intermediat., 2016, vol. 42, p. 6511.

    Article  CAS  Google Scholar 

  19. Yang, L., Gao, M., Dai, B., Guo, X., Liu, Z., and Peng, B., An efficient NiS@N/S-C hybrid oxygen evolution electrocatalyst derived from metal-organic framework, Electrochim. Acta, 2016, vol. 191, p. 813.

    Article  CAS  Google Scholar 

  20. Zhang, X., Sun, W., Du, H., Kong, R., and Qu, F., A Co-MOF nanosheet array as a high-performance electrocatalyst for the oxygen evolution reaction in alkaline electrolytes, Inorg. Chem. Front., 2018, vol. 5, p. 344.

    Article  CAS  Google Scholar 

  21. Li, Y., Xie, M., Zhang, X., Liu, Q., Lin, D., Xu, C., Xie, F., and Sun, X., Co-MOF nanosheet array: a high-performance electrochemical sensor for non-enzymatic glucose detection, Sens. Actuators B: Chem., 2019, vol. 278, p. 126.

    Article  CAS  Google Scholar 

  22. Xu, Y., Li, B., Zheng, S., Wu, P., Zhang, J., Xue, H., Xu, Q., and Pang, H., Ultrathin two-dimensional cobalt-organic framework nanosheets for high-performance electrocatalytic oxygen evolution, J. Mater. Chem. A, 2018, vol. 6, p. 22070.

    Article  CAS  Google Scholar 

  23. Jin, X., Li, J., Cui, Y., Liu, X., Wang, K., Zhou, Y., Yang, W., Zhang, X., Zhang, C., Jiang, X., and Liu, B., In-situ synthesis of porous Ni2P nanosheets for efficient and stable hydrogen evolution reaction, Int. J. Hydrogen. Energy, 2019, vol. 44, p. 5739.

    Article  CAS  Google Scholar 

  24. Xu, J., Zhang, L., Shi, R., and Zhu, Y., Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis, J. Mater. Chem. A, 2013, vol. 1, p. 14766.

    Article  CAS  Google Scholar 

  25. Fang, X., Ma, L., Liang, K., Zhao, S., Jiang, Y., Lin, C., Zhao, T., Cheang, T.Y., and Xu, A., The doping of phosphorus atoms into graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution, J. Mater. Chem. A, 2019, vol. 7, p. 11506.

    Article  CAS  Google Scholar 

  26. Huang, H., Xiao, K., Tian, N., Dong, F., Zhang, T., Du, X., and Zhang, Y., Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity, J. Mater. Chem. A, 2017, vol. 5, p. 17452.

    Article  CAS  Google Scholar 

  27. Liu, Q., Shen, J., Yu, X., Yang, X., Liu, W., Yang, J., Tang, H., Xu, H., Li, H., Li, Y., and Xu, L., Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-codoped and exfoliated ultrathin g-C3N4 nanosheets, Appl. Catal. B: Environ., 2019, vol. 248, p. 84.

    Article  CAS  Google Scholar 

  28. Pang, H., Li, Q., Zheng, S., Hu, X., Shao, Z., and Zheng, M., Ultrathin nanosheet Ni-metal organic framework assemblies for high-efficiency ascorbic acid electrocatalysis, Chemelectrochem, 2018, vol. 5, p. 3859.

    Article  Google Scholar 

  29. Raoof, J.B., Ojani, R., Beitollahi, H., and Hosseinzadeh, R., Electrocatalytic oxidation and highly selective voltammetric determination of L-cysteine at the surface of a 1-[4-(ferrocenyl ethynyl) phenyl]-1-ethanone modified carbon paste electrode, Anal. Sci., 2006, vol. 22, p. 1213.

    Article  CAS  PubMed  Google Scholar 

  30. Maouche, N., Nessark, B., and Bakas, I., Platinum electrode modified with polyterthiophene doped with metallic nanoparticles, as sensitive sensor for the electroanalysis of ascorbic acid (AA), Arab. J. Chem., 2019, vol. 12, p. 2556.

    Article  CAS  Google Scholar 

  31. Sun, L., Li, H., Li, M., Li, C., Li, P., and Yang, B., Simultaneous determination of ascorbic acid, dopamine, uric acid, tryptophan, and nitrite on a novel carbon electrode, J. Electroanal. Chem., 2016, vol. 783, p. 167.

    Article  CAS  Google Scholar 

  32. Cai, W., Lai, J., Lai, T., Xie, H., and Ye, J., Controlled functionalization of flexible graphene fibers for the simultaneous determination of ascorbic acid, dopamine and uric acid, Sens. Actuators B: Chem., 2016, vol. 224, p. 225.

    Article  CAS  Google Scholar 

  33. Zhang, W., Chai, Y., Yuan, R., Chen, S., Han, J., and Yuan, D., Facile synthesis of graphene hybrid tube-like structure for simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan, Anal. Chim. Acta, 2012, vol. 756, p. 7.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Y., Wen, F., Huan, Z., Tian, J., Zhou, Z., Yuan, K., and Wang, H., Nitrogen doped lignocellulose/binary metal sulfide modified electrode: preparation and application for non-enzymatic ascorbic acid, dopamine and nitrite sensing, J. Electroanal. Chem., 2017, vol. 806, p. 150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Co-first authors: Yang Hu and Qingcui Liu contribute to this work equally.

Authors Banghua Peng and Feng Yu proposed the experimental approach; authors Yang Hu and Qingcui Liu carried out synthesis of samples and the electrochemical study; authors Yang Hu and Haoyi Ren performed XPS analysis, TEM analysis and XRD techniques; author Jianglian Deng participated in data treatment; authors Wenju Liang, Peiyuan Shao and Zhiyong Liu took part in preparation of the manuscript; all authors participated in discussion of results.

Corresponding author

Correspondence to Banghua Peng.

Ethics declarations

FINANCIAL SUPPORT

This work was supported by the National Natural Science Foundation of China (21663023), the Double First Class General Science and Technology Projects from School of Chemistry and Chemical Engineering, Shihezi University (SHYL-YB201903), and the Undergraduate Research and Training Program, Shihezi University (SRP2020274).

CONFLICT OF INTERESTS

Authors announce that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang Hu, Liu, Q., Ren, H. et al. Schiff Base Derived CoPO–CN for Electrocatalytic Oxygen Evolution, Urea Oxidation and Ascorbic Acid Sensing. Russ J Electrochem 59, 92–103 (2023). https://doi.org/10.1134/S1023193523010044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523010044

Keywords:

Navigation