Skip to main content

A New Electroactive and Stable Electrode Based on Praseodymium Molybdate for Symmetrical SOFCs


The electrochemical activity of a new electrode material based on Pr5Mo3O16 + δ (РМО) within the composition of a symmetrical solid oxide fuel cell (S-SOFC) of the electrolyte-supported design is studied. The model S-SOFC of the РМО/Ce0.9Gd0.1O1.95(GDC)/Zr0.84Y0.16O1.92(YSZ)/GDC/PMO composition demonstrated the maximum power density of 28 mW/cm2 at 900°С. To improve the power characteristics of S-SOFC, the porous buffer GDC layer is modified by the method of Pr6O11 infiltration. It is found that the addition of electroactive Pr6O11 into the GDC buffer layer provides the three-fold increase in the fuel-cell power density with the maximum of 90 mW/cm2 at 900°С. The 10 h life-time test of the model S-SOFC with the РМО/GDC + Pr6O11/YSZ/GDC + Pr6O11/PMO composition carried out at a load of 0.7 V reveals the absence of any considerable degradation in fuel cell power characteristics. The results obtained suggest that the new electrode material based on PMO holds promise for the development of S-SOFC.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others


  1. Istomin, S.Ya., Lyskov, N.V., Mazo, G.N., and Antipov, E.V., Electrode materials based on complex d‑metal oxides for symmetrical solid oxide fuel cells, Russ. Chem. Rev., 2021, vol. 90, p. 644.

    Article  Google Scholar 

  2. Su, C., Wang, W., Liu, M., Tadé, M.O., and Shao, Z., Progress and prospects in symmetrical solid oxide fuel cells with two identical electrodes, Adv. Energy Mater., 2015, vol. 5, p. 1500188.

    Article  Google Scholar 

  3. Ruiz-Morales, J.C., Marrero-López, D., Canales-Vázquez, J., and Irvine, J.T., Symmetric and reversible solid oxide fuel cells, RSC Adv., 2011, vol. 1, p. 1403.

    Article  CAS  Google Scholar 

  4. Cowin, P.I., Petit, C.T., Lan, R., Irvine, J.T., and Tao, S., Recent progress in the development of anode materials for solid oxide fuel cells, Adv. Energy Mater., 2011, vol. 1, p. 14.

    Article  Google Scholar 

  5. Ge, X.M., Chan, S.H., Liu, Q.L., and Sun, Q., Solid oxide fuel cell anode materials for direct hydrocarbon utilization, Adv. Energy Mater., 2012, vol. 2, p. 1156.

    Article  CAS  Google Scholar 

  6. Ishihara, T., Perovskite oxide for solid oxide fuel cells. New York: Springer Science & Business, 2009. 302 p.

    Book  Google Scholar 

  7. Tilley, R.J.D., Perovskites: structure – property relationships. Chichester: Wiley, 2016. 327 p.

    Book  Google Scholar 

  8. Sadykov, V.A., Muzykantov, V.S., Yeremeev, N.F., Pelipenko, V.V., Sadovskaya, E.M., Bobin, A.S., Fedorova, Yu.E., Amanbaeva, D.G., and Smirnova, A.L., Solid oxide fuel cell cathodes: importance of chemical composition and morphology, Catal. Sustain. Energy, 2015, vol. 2, p. 57.

    Article  CAS  Google Scholar 

  9. Shu, L., Sunarso, J., Hashim, S.S., Mao, J., Zhou, W., and Liang, F., Advanced perovskite anodes for solid oxide fuel cells: A review, Int. J. Hydrogen Energy, 2019, vol. 44, p. 31275.

    Article  CAS  Google Scholar 

  10. Istomin, S.Ya. and Antipov, E.V., Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells, Russ. Chem. Rev., 2013, vol. 82, p. 686.

    Article  Google Scholar 

  11. Kostogloudis, G.Ch., Tsiniarakis, G., and Ftikos, Ch., Chemical reactivity of perovskite oxide SOFC cathodes and yttria stabilized zirconia, Solid State Ionics, 2000, vol. 135, p. 529.

    Article  CAS  Google Scholar 

  12. Zhang, L., Chen, G., Dai, R., Lv, X., Yang, D., and Geng, Sh., A review of the chemical compatibility between oxide electrodes and electrolytes in solid oxide fuel cells, J. Power Sources, 2021, vol. 492, p. 229630.

    Article  CAS  Google Scholar 

  13. Van Roosmalen, J.A.M. and Cordfunke, E.H.P., Chemical reactivity and interdiffusion of (La,Sr)MnO3 and (Zr,Y)O2 solid oxide fuel cell cathode and electrolyte materials, Solid State Ionics, 1992, vol. 52, p. 303.

    Article  CAS  Google Scholar 

  14. Yokokawa, H., H. Sakai, H., Kawada, T., and Dokiya, M., Thermodynamic analysis of reaction profiles between LaMO3  (M  = Ni, Co, Mn)   and ZrO2, Solid State Ionics, 1991, vol. 138, p. 2719.

    CAS  Google Scholar 

  15. Dos Santos-Gomez, L., Leon-Reina, L., Porras-Vazquez, J.M., Losilla, E.R., and Marrero-Lopez, D., Chemical stability and compatibility of double perovskite anode materials for SOFC, Solid State Ionics, 2013, vol. 239, p. 1.

    Article  CAS  Google Scholar 

  16. Marrero-Lopez, D., Pena-Martínez, J., Ruiz-Morales, J.C., Gabas, M. P., Nunez, M.A. Aranda, G., and Ramos-Barrado, J.R., Redox behaviour, chemical compatibility and electrochemical performance of Sr2MgMoO6 – δ as SOFC anode, Solid State Ionics, 2010, vol. 180, p. 1672.

    Article  CAS  Google Scholar 

  17. Chen, Y., Cheng, Z., Yang, Y., Yu, W., Tian, D., Lu, X., Ding, Y., and Lin, B., Improved performance of symmetrical solid oxide fuel cells with redox-reversible cermet electrodes, Mater. Lett., 2017, vol. 188, p. 413.

    Article  CAS  Google Scholar 

  18. Chen, G., Sun, W., Luo, Y., Liu, H., Geng, S., Yu, K., and Liu, G., Investigation of layered Ni0.8Co0.15Al0.05LiO2 in electrode for low-temperature solid oxide fuel cells, Int. J. Hydrogen Energy, 2018, vol. 43, p. 417.

    Article  CAS  Google Scholar 

  19. Ni, C., Feng, J., Cui, J., Zhou, J., and Ni, J., An n-type oxide Fe0.5Mg0.25Ti0.25Nb0.9Mo0.1O4 – δ for both cathode and anode of a solid oxide fuel cell, J. Electrochem. Soc., 2017, vol. 164, p. F283.

    Article  CAS  Google Scholar 

  20. Lyskov, N.V., Kotova, A.I., Istomin, S.Ya., Mazo, G.N., and Antipov, E.V., Electrochemical properties of electrode materials based on Pr5Mo3O16 + δ, Russ. J. Electrochem., 2020, vol. 56, p. 93.

    Article  CAS  Google Scholar 

  21. Istomin, S.Ya., Kotova, A.I., Lyskov, N.V., Mazo, G.N., and Antipov, E.V., Pr5Mo3O16 + δ: A new anode material for solid oxide fuel cells, Russ. J. Inorg. Chem., 2018, vol. 63, p. 1291.

    Article  CAS  Google Scholar 

  22. Antipin, A.M., Alekseeva, O.A., Sorokina, N.I., Kuskova, A.N., Artemov, V.V., Murzin, V.Y., Kharitonova, E.P., Orlova, E.A., and Voronkova, V.I., Structure of compound Pr5Mo3O16 + δ exhibiting mixed electronic-ionic conductivity, Crystallogr. Rep., 2015, vol. 60, p. 640.

    Article  CAS  Google Scholar 

  23. Voronkova, V.I., Leonidov, I.A., Kharitonova, E.P., Belov, D.A., Patrakeev, M.V., Leonidova, O.N., and Kozhevnikov, V.L., Oxygen ion and electron conductivity in fluorite-like molybdates Nd5Mo3O16 and Pr5Mo3O16, J. Alloys Compd., 2014, vol. 615, p. 395.

    Article  CAS  Google Scholar 

  24. Tsai, M., Greenblatt, M., and McCarroll, W.H., Oxide ion conductivity in Ln5Mo3O16 + x (Ln = La, Pr, Nd, Sm, Gd; x = 0.5), Chem. Mater., 1989, vol. 1, p. 253.

    Article  CAS  Google Scholar 

  25. Lyskov, N.V., Galin, M.Z., Napol’skii, K.S., Roslyakov, I.V., and Mazo, G.N., Increasing the electrochemical activity of the interface Pr1.95La0.05CuO4/porous Ce0.9Gd0.1O1.95 layer by infiltrating Pr6O11, Russ. J. Electrochem., 2021, vol. 57, p. 670.

    Article  Google Scholar 

  26. Martinez-Lope, M.J., Alonso, J.A., Sheptyakov, D., and Pomyakushin, V., Preparation and structural study from neutron diffraction data of Pr5Mo3O16, J. Solid State Chem., 2010, vol. 183, p. 2974.

    Article  CAS  Google Scholar 

  27. Ding, D., Li, X., Lai, S.Y., Gerdes, K., and Liu, M., Enhancing SOFC cathode performance by surface modification through infiltration, Energy Environ. Sci., 2014, vol. 7, p. 552.

    Article  CAS  Google Scholar 

  28. Nicollet, C., Flura, A., Vibhu, V., Rougier, A., Bassat, J.M., and Grenier, J.C., An innovative efficient oxygen electrode for SOFC: Pr6O11 infiltrated into Gd-doped ceria backbone, Int. J. Hydrogen Energy, 2016, vol. 41, p. 15538.

    Article  CAS  Google Scholar 

  29. Connor, P.A., Yue, X., Savaniu, C.D., Price, R., Triantafyllou, G., Cassidy, M., Kerherve, G., Payne, D.J., Maher, R.C., Cohen, L.F., Tomov, R.I., Glowacki, B.A., Kumar, R.V., and Irvine, J.T.S., Tailoring SOFC electrode microstructures for improved performance, Adv. Energy Mater., 2018, vol. 8, p. 1800120.

    Article  Google Scholar 

  30. Taguchi, H., Chiba, R., Komatsu, T., Orui, H., Watanabe, K., and Hayashi, K., LNF SOFC cathodes with active layer using Pr6O11 or Pr-doped CeO2, J. Power Sources, 2013, vol. 241, p. 768.

    Article  CAS  Google Scholar 

Download references


S.Ya. Istomin is grateful to the Interdisciplinary Scientific and Educational School of the Lomonosov Moscow State University: “The Future of the Planet and Global Environmental Changes” for supporting his investigations.


This study supported by the Russian Foundation for Basic Research (grant no. 20-08-00454). The materials used were synthesized within the framework of the State Task for the Institute of Problems of Chemical Physics (no. АААА-А19-119061890019-5).

Author information

Authors and Affiliations


Corresponding author

Correspondence to N. V. Lyskov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

A tribute to outstanding electrochemist Oleg Aleksandrovich Petrii (1937–2021).

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyskov, N.V., Kotova, A.I., Petukhov, D.I. et al. A New Electroactive and Stable Electrode Based on Praseodymium Molybdate for Symmetrical SOFCs. Russ J Electrochem 58, 989–997 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: