Abstract
The electrochemical activity of a new electrode material based on Pr5Mo3O16 + δ (РМО) within the composition of a symmetrical solid oxide fuel cell (S-SOFC) of the electrolyte-supported design is studied. The model S-SOFC of the РМО/Ce0.9Gd0.1O1.95(GDC)/Zr0.84Y0.16O1.92(YSZ)/GDC/PMO composition demonstrated the maximum power density of 28 mW/cm2 at 900°С. To improve the power characteristics of S-SOFC, the porous buffer GDC layer is modified by the method of Pr6O11 infiltration. It is found that the addition of electroactive Pr6O11 into the GDC buffer layer provides the three-fold increase in the fuel-cell power density with the maximum of 90 mW/cm2 at 900°С. The 10 h life-time test of the model S-SOFC with the РМО/GDC + Pr6O11/YSZ/GDC + Pr6O11/PMO composition carried out at a load of 0.7 V reveals the absence of any considerable degradation in fuel cell power characteristics. The results obtained suggest that the new electrode material based on PMO holds promise for the development of S-SOFC.
This is a preview of subscription content, access via your institution.










Similar content being viewed by others
REFERENCES
Istomin, S.Ya., Lyskov, N.V., Mazo, G.N., and Antipov, E.V., Electrode materials based on complex d‑metal oxides for symmetrical solid oxide fuel cells, Russ. Chem. Rev., 2021, vol. 90, p. 644.
Su, C., Wang, W., Liu, M., Tadé, M.O., and Shao, Z., Progress and prospects in symmetrical solid oxide fuel cells with two identical electrodes, Adv. Energy Mater., 2015, vol. 5, p. 1500188.
Ruiz-Morales, J.C., Marrero-López, D., Canales-Vázquez, J., and Irvine, J.T., Symmetric and reversible solid oxide fuel cells, RSC Adv., 2011, vol. 1, p. 1403.
Cowin, P.I., Petit, C.T., Lan, R., Irvine, J.T., and Tao, S., Recent progress in the development of anode materials for solid oxide fuel cells, Adv. Energy Mater., 2011, vol. 1, p. 14.
Ge, X.M., Chan, S.H., Liu, Q.L., and Sun, Q., Solid oxide fuel cell anode materials for direct hydrocarbon utilization, Adv. Energy Mater., 2012, vol. 2, p. 1156.
Ishihara, T., Perovskite oxide for solid oxide fuel cells. New York: Springer Science & Business, 2009. 302 p.
Tilley, R.J.D., Perovskites: structure – property relationships. Chichester: Wiley, 2016. 327 p.
Sadykov, V.A., Muzykantov, V.S., Yeremeev, N.F., Pelipenko, V.V., Sadovskaya, E.M., Bobin, A.S., Fedorova, Yu.E., Amanbaeva, D.G., and Smirnova, A.L., Solid oxide fuel cell cathodes: importance of chemical composition and morphology, Catal. Sustain. Energy, 2015, vol. 2, p. 57.
Shu, L., Sunarso, J., Hashim, S.S., Mao, J., Zhou, W., and Liang, F., Advanced perovskite anodes for solid oxide fuel cells: A review, Int. J. Hydrogen Energy, 2019, vol. 44, p. 31275.
Istomin, S.Ya. and Antipov, E.V., Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells, Russ. Chem. Rev., 2013, vol. 82, p. 686.
Kostogloudis, G.Ch., Tsiniarakis, G., and Ftikos, Ch., Chemical reactivity of perovskite oxide SOFC cathodes and yttria stabilized zirconia, Solid State Ionics, 2000, vol. 135, p. 529.
Zhang, L., Chen, G., Dai, R., Lv, X., Yang, D., and Geng, Sh., A review of the chemical compatibility between oxide electrodes and electrolytes in solid oxide fuel cells, J. Power Sources, 2021, vol. 492, p. 229630.
Van Roosmalen, J.A.M. and Cordfunke, E.H.P., Chemical reactivity and interdiffusion of (La,Sr)MnO3 and (Zr,Y)O2 solid oxide fuel cell cathode and electrolyte materials, Solid State Ionics, 1992, vol. 52, p. 303.
Yokokawa, H., H. Sakai, H., Kawada, T., and Dokiya, M., Thermodynamic analysis of reaction profiles between LaMO3 (M = Ni, Co, Mn) and ZrO2, Solid State Ionics, 1991, vol. 138, p. 2719.
Dos Santos-Gomez, L., Leon-Reina, L., Porras-Vazquez, J.M., Losilla, E.R., and Marrero-Lopez, D., Chemical stability and compatibility of double perovskite anode materials for SOFC, Solid State Ionics, 2013, vol. 239, p. 1.
Marrero-Lopez, D., Pena-Martínez, J., Ruiz-Morales, J.C., Gabas, M. P., Nunez, M.A. Aranda, G., and Ramos-Barrado, J.R., Redox behaviour, chemical compatibility and electrochemical performance of Sr2MgMoO6 – δ as SOFC anode, Solid State Ionics, 2010, vol. 180, p. 1672.
Chen, Y., Cheng, Z., Yang, Y., Yu, W., Tian, D., Lu, X., Ding, Y., and Lin, B., Improved performance of symmetrical solid oxide fuel cells with redox-reversible cermet electrodes, Mater. Lett., 2017, vol. 188, p. 413.
Chen, G., Sun, W., Luo, Y., Liu, H., Geng, S., Yu, K., and Liu, G., Investigation of layered Ni0.8Co0.15Al0.05LiO2 in electrode for low-temperature solid oxide fuel cells, Int. J. Hydrogen Energy, 2018, vol. 43, p. 417.
Ni, C., Feng, J., Cui, J., Zhou, J., and Ni, J., An n-type oxide Fe0.5Mg0.25Ti0.25Nb0.9Mo0.1O4 – δ for both cathode and anode of a solid oxide fuel cell, J. Electrochem. Soc., 2017, vol. 164, p. F283.
Lyskov, N.V., Kotova, A.I., Istomin, S.Ya., Mazo, G.N., and Antipov, E.V., Electrochemical properties of electrode materials based on Pr5Mo3O16 + δ, Russ. J. Electrochem., 2020, vol. 56, p. 93.
Istomin, S.Ya., Kotova, A.I., Lyskov, N.V., Mazo, G.N., and Antipov, E.V., Pr5Mo3O16 + δ: A new anode material for solid oxide fuel cells, Russ. J. Inorg. Chem., 2018, vol. 63, p. 1291.
Antipin, A.M., Alekseeva, O.A., Sorokina, N.I., Kuskova, A.N., Artemov, V.V., Murzin, V.Y., Kharitonova, E.P., Orlova, E.A., and Voronkova, V.I., Structure of compound Pr5Mo3O16 + δ exhibiting mixed electronic-ionic conductivity, Crystallogr. Rep., 2015, vol. 60, p. 640.
Voronkova, V.I., Leonidov, I.A., Kharitonova, E.P., Belov, D.A., Patrakeev, M.V., Leonidova, O.N., and Kozhevnikov, V.L., Oxygen ion and electron conductivity in fluorite-like molybdates Nd5Mo3O16 and Pr5Mo3O16, J. Alloys Compd., 2014, vol. 615, p. 395.
Tsai, M., Greenblatt, M., and McCarroll, W.H., Oxide ion conductivity in Ln5Mo3O16 + x (Ln = La, Pr, Nd, Sm, Gd; x = 0.5), Chem. Mater., 1989, vol. 1, p. 253.
Lyskov, N.V., Galin, M.Z., Napol’skii, K.S., Roslyakov, I.V., and Mazo, G.N., Increasing the electrochemical activity of the interface Pr1.95La0.05CuO4/porous Ce0.9Gd0.1O1.95 layer by infiltrating Pr6O11, Russ. J. Electrochem., 2021, vol. 57, p. 670.
Martinez-Lope, M.J., Alonso, J.A., Sheptyakov, D., and Pomyakushin, V., Preparation and structural study from neutron diffraction data of Pr5Mo3O16, J. Solid State Chem., 2010, vol. 183, p. 2974.
Ding, D., Li, X., Lai, S.Y., Gerdes, K., and Liu, M., Enhancing SOFC cathode performance by surface modification through infiltration, Energy Environ. Sci., 2014, vol. 7, p. 552.
Nicollet, C., Flura, A., Vibhu, V., Rougier, A., Bassat, J.M., and Grenier, J.C., An innovative efficient oxygen electrode for SOFC: Pr6O11 infiltrated into Gd-doped ceria backbone, Int. J. Hydrogen Energy, 2016, vol. 41, p. 15538.
Connor, P.A., Yue, X., Savaniu, C.D., Price, R., Triantafyllou, G., Cassidy, M., Kerherve, G., Payne, D.J., Maher, R.C., Cohen, L.F., Tomov, R.I., Glowacki, B.A., Kumar, R.V., and Irvine, J.T.S., Tailoring SOFC electrode microstructures for improved performance, Adv. Energy Mater., 2018, vol. 8, p. 1800120.
Taguchi, H., Chiba, R., Komatsu, T., Orui, H., Watanabe, K., and Hayashi, K., LNF SOFC cathodes with active layer using Pr6O11 or Pr-doped CeO2, J. Power Sources, 2013, vol. 241, p. 768.
ACKNOWLEDGMENTS
S.Ya. Istomin is grateful to the Interdisciplinary Scientific and Educational School of the Lomonosov Moscow State University: “The Future of the Planet and Global Environmental Changes” for supporting his investigations.
Funding
This study supported by the Russian Foundation for Basic Research (grant no. 20-08-00454). The materials used were synthesized within the framework of the State Task for the Institute of Problems of Chemical Physics (no. АААА-А19-119061890019-5).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflict of interest.
Additional information
Translated by T. Safonova
A tribute to outstanding electrochemist Oleg Aleksandrovich Petrii (1937–2021).
Rights and permissions
About this article
Cite this article
Lyskov, N.V., Kotova, A.I., Petukhov, D.I. et al. A New Electroactive and Stable Electrode Based on Praseodymium Molybdate for Symmetrical SOFCs. Russ J Electrochem 58, 989–997 (2022). https://doi.org/10.1134/S102319352211009X
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S102319352211009X