Skip to main content
Log in

The Role of Chlorine Dioxide in the Electroreduction of Chlorates at Low pH

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The specific features of the electroreduction of chlorates in strongly acidic aqueous solutions are studied by carrying out the electrolysis of 12.5 mM solution of sodium chlorate in 8 M sulfuric acid under potentiostatic conditions at the limiting cathodic current. The periodically collected optical spectrum of solution reveals the main contribution made by chlorine dioxide ClO2. It is shown that both the current and the chlorine dioxide concentration vary in time by one and the same law corresponding to the autocatalytic redox-mediator mechanism. When the current passes through a sharp maximum typical of this mechanism, a considerable part of the total concentration of chlorine atoms in the system pertains to chlorine dioxide; hence, this component plays the key role in the process of chlorate electroreduction. The virtually complete conversion of initial chlorate to chloride is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Petrii, O A. and Safonova, T.Y., Electroreduction of nitrate and nitrite anions on platinum metals: A model process for elucidating the nature of the passivation by hydrogen adsorption, J. Electroanal. Chem., 1992, vol. 331, nos. 1–2, p. 897.

    Article  CAS  Google Scholar 

  2. Safonova, T.Y. and Petrii, O.A., Effect of inorganic cations on the electroreduction of nitrate anions on Pt|Pt electrodes in sulfuric acid solutions, J. Electroanal. Chem., 1998, vol. 448, no. 2, p. 211.

    Article  CAS  Google Scholar 

  3. Safonova, T.Y. and Petrii, O.A., Effect of tin ions on the electroreduction of nitrate anions on platinized platinum electrodes, Russ. J. Electrochem., 1998, vol. 34, p. 1137.

    CAS  Google Scholar 

  4. Petrii, O.A., Akbaeva, Y.A., Safonova, T.Y., Kondrasheva, V.S., Kolosov, E.N., Tsirlina, G.A., and Gryaznov, V.M., Intensification of the nitrate anion reduction on a membrane palladium electrode, Russ. J. Electrochem., 2002, vol. 38, p. 220.

    Article  CAS  Google Scholar 

  5. Nazmutdinov, R.R., Glukhov, D.V., Tsirlina, G.A., and Petrii, O.A., Activationless reduction of the hexacyanoferrate anion on a mercury electrode, Russ. J. Electrochem., 2003, vol. 39, p. 97.

    Article  CAS  Google Scholar 

  6. Botukhova, G.N., Borzenko, M.I., and Petrii, O A., Effect of ammonium ions on the electroreduction of anions at a mercury electrode, Russ. J. Electrochem., 2004, vol. 40, p. 414.

    Article  CAS  Google Scholar 

  7. Nikiforova, T.G. and Petrii, O.A., Effect of cadmium and lead adatoms on the reduction kinetics of peroxodisulfate anions at platinized platinum in acid solutions, Russ. J. Electrochem., 2005, vol. 41, p. 118.

    Article  CAS  Google Scholar 

  8. Botukhova, G.N. and Petrii, O.A., Electroreduction of peroxodisulfate anion at platinum rotating disc electrode in the cyclic voltammetry mode, Russ. J. Electrochem., 2013, vol. 49, p. 1145.

    Article  CAS  Google Scholar 

  9. Tolmachev, Y.V., Piatkivskyi, A., Ryzhov, V.V., Konev, D.V., and Vorotyntsev, M.A., Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion, J. Solid State Electrochem., 2015, vol. 19, no. 9, p. 2711.

    Article  CAS  Google Scholar 

  10. Yang, Z., Gerhardt, M.R., Fortin, M., Shovlin, C., Weber, A.Z., Perry, M.L., and Saraidaridis, J.D., Polysulfide-permanganate flow battery using abundant active materials, J. Electrochem. Soc., 2021, vol. 168, no. 7, p. 070516.

    Article  CAS  Google Scholar 

  11. Liu, C., Liu, H., and Liu, L., Potassium permanganate as an oxidant for a microfluidic direct formate fuel cell, Int. J. Electrochem. Sci, 2019, vol. 14, p. 4557.

    Article  CAS  Google Scholar 

  12. Licht, S., A novel aqueous aluminum| permanganate fuel cell, Electrochem. Commun., 1999, vol. 1, p. 33.

    Article  CAS  Google Scholar 

  13. Kim, C., Lee, C.R., Song, Y.E., Heo, J., Choi, S.M., Lim, D.H., and Kim, J.R., Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater, Chem. Eng. J., 2017, vol. 328, p. 703.

    Article  CAS  Google Scholar 

  14. Shimin, Z., Sulin, C., Debi, Z., Wei, Q., Yu, H., and Xiang, C., Pilot study of an aqueous zinc–bichromate battery, Energy Fuels, 2009, vol. 23, no. 3, p. 1668.

    Article  Google Scholar 

  15. Hsu, L., Masuda, S.A., Nealson, K.H., and Pirbazari, M., Evaluation of microbial fuel cell Shewanella biocathodes for treatment of chromate contamination, RSC Adv., 2012, vol. 2, p. 5844.

    CAS  Google Scholar 

  16. Luo, J., Hu, B., Debruler, C., Bi, Y., Zhao, Y., Yuan, B., Hu, M., Wu, W., and Liu, T.L., Unprecedented capacity and stability of ammonium ferrocyanide catholyte in pH neutral aqueous redox flow batteries, Joule, 2019, vol. 3, no. 1, p. 149.

    Article  CAS  Google Scholar 

  17. Long, Y., Xu, Z., Wang, G., Xu, H., Yang, M., Ding, M., Yuan, D., Yan, C., Sun, Q., Liu, M., and Jia, C., A neutral polysulfide/ferricyanide redox flow battery, iScience, 2021, vol. 24, no. 10, p. 103157. https://doi.org/10.1016/j.isci.2021.103157

  18. Shin, M., Oh, S., Jeong, H., Noh, C., Chung, Y., Han, J.W., and Kwon, Y., Aqueous redox flow battery using iron 2,2-bis(hydroxymethyl)-2,2′,2′-nitrilotriethanol complex and ferrocyanide as newly developed redox couple, Int. J. Energy Res., 2022, vol. 46, p. 8175. https://doi.org/10.1002/er.7718

    Article  CAS  Google Scholar 

  19. Modiba, P., Matoetoe, M., and Crouch, A.M., Kinetics study of transition metal complexes (Ce-DTPA, Cr-DTPA and V-DTPA) for redox flow battery applications, Electrochim. Acta, 2013, vol. 94, p. 336.

    Article  CAS  Google Scholar 

  20. Teramoto, K., Nishide, T., and Ikeda, Y., Studies on metal complexes as active materials in redox-flow battery using ionic liquids as electrolyte: Cyclic voltammetry of betainium bis(trifluoromethylsulfonyl)imide solution dissolving Na[FeIII(edta)(H2O)] as an anode active material, Electrochem., 2015, vol. 83, no. 9, p. 730.

    Article  CAS  Google Scholar 

  21. Hou, S., Chen, L., Fan, X., Fan, X., Ji, X., Wang, B., Cui, C., Chen, J., Yang, C., Wang, W., Li, C., and Wang, C., High-energy and low-cost membrane-free chlorine flow battery, Nat. Commun., 2022, vol. 13, p. 1281. https://doi.org/10.1038/s41467-022-28880-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ovsyannikov, N.A., Romadina, E.I., Akhmetov, N.O., Gvozdik, N.A., Akkuratov, A.V., Pogosova, M.A., and Stevenson, K.J., All-organic non-aqueous redox flow batteries with advanced composite polymer-ceramic Li-conductive membrane, J. Energy Storage, 2022, vol. 46, p. 103810. https://doi.org/10.1016/j.est.2021.103810

    Article  Google Scholar 

  23. Petrov, M. M., Modestov, A. D., Konev, D.V., Antipov, A.E., Loktionov, P.A., Pichugov, R.D., Kartashova, N.V., Glazkov, A.T., Abunaeva, L.Z., Andreev, V.N., and Vorotyntsev, M.A., Redox flow batteries: importance in modern electrical energy industry and comparative characteristics of the main types, Russ. Chem. Rev., 2021, vol. 90, p. 677. https://doi.org/10.1070/RCR4987

    Article  Google Scholar 

  24. Fang, X., Li, Z., Zhao, Y., Yue, D., Zhang, L., and Wei, X., Multielectron organic redoxmers for energy-dense redox flow batteries, ACS Mater. Lett., 2022, vol. 4, p. 277. https://doi.org/10.1021/acsmaterialslett.1c00668

    Article  CAS  Google Scholar 

  25. Vorotyntsev, M.A., Antipov, A.E., and Konev, D.V., Bromate anion reduction: novel autocatalytic (EC″) mechanism of electrochemical processes. Its implication for redox flow batteries of high energy and power densities, Pure Appl. Chem., 2017, vol. 89, no. 10, p. 1429.

    Article  CAS  Google Scholar 

  26. Vorotyntsev, M.A., Konev, D.V., and Tolmachev, Y.V., Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC" mechanism. Theory for stationary 1D regime, Electrochim. Acta, 2015, vol. 173, p. 779. https://doi.org/10.1016/j.electacta.2015.05.099

    Article  CAS  Google Scholar 

  27. Vorotyntsev, M.A. and Antipov, A.E., Bromate electroreduction in acidic solution inside rectangular channel under flow-through porous electrode conditions, Electrochim. Acta, 2019, vol. 323, p. 134799. https://doi.org/10.1016/j.electacta.2019.134799

    Article  CAS  Google Scholar 

  28. Vorotyntsev, M.A. and Konev, D.V., Halate electroreduction via autocatalytic mechanism for rotating disk electrode configuration evolution of concentrations and current after large-amplitude potential step, Electrochim. Acta, 2021, vol. 391, p. 138914. https://doi.org/10.1016/j.electacta.2021.138914

    Article  CAS  Google Scholar 

  29. Vorotyntsev, M.A., Volgin, V.M., and Davydov, A.D., Halate electroreduction from acidic solution at rotating disc electrode. Theoretical study of the steady-state convective-migration-diffusion transport for comparable concentrations of halate ions and protons, Electrochim. Acta, 2022, vol. 409, p. 139961. https://doi.org/10.1016/j.electacta.2022.139961

    Article  CAS  Google Scholar 

  30. Modestov, A.D., Konev, D.V., Antipov, A.E., Petrov, M.M., Pichugov, R.D., and Vorotyntsev, M.A., Bromate electroreduction from sulfuric acid solution at rotating disk electrode: experimental study, Electrochim. Acta, 2018, vol. 259, p. 655.

    Article  CAS  Google Scholar 

  31. Konev, D.V., Antipov, A.E., Petrov, M.M., Shamraeva, M.A., and Vorotyntsev, M.A., Surprising dependence of the current density of bromate electroreduction on the microelectrode radius as manifestation of the autocatalytic redox-cycle (EC″) reaction mechanism, Electrochem. Comm., 2018, vol. 86, p. 76. https://doi.org/10.1016/j.elecom.2017.11.006

  32. Modestov, A.D., Konev, D.V., Tripachev, O.V., Antipov, A.E., Tolmachev, Y.V., and Vorotyntsev, M.A., A hydrogen–bromate flow battery for air-deficient environments, Energy Technol., 2018, vol. 6, p. 242.

    Article  CAS  Google Scholar 

  33. Modestov, A.D., Konev, D.V., Antipov, A.E., and Vorotyntsev, M.A., Hydrogen-bromate flow battery: can one reach both high bromate utilization and specific power? J. Solid State Electrochem., 2019, vol. 23, no. 11, p. 3075.

    Article  CAS  Google Scholar 

  34. Modestov, A.D., Andreev, V.N., Antipov, A.E., and Petrov, M.M., Novel aqueous zinc–halogenate flow batteries as an offspring of zinc–air fuel cells for use in oxygen-deficient environment, Energy Technol., 2021, vol. 9, p. 2100233.

    Article  CAS  Google Scholar 

  35. Skrabal, A. and Schreiner, H., Die Reduktionsgeschwindigkeit der Chlorsäure und Bromsäure, Monatsh. Chem., 1934, vol. 65(1), p. 213. https://doi.org/10.1007/bf01522061

    Article  Google Scholar 

  36. Taube, H. and Dodgen, H., Applications of radioactive chlorine to the study of the mechanisms of reactions involving changes in the oxidation state of chlorine, J. Amer. Chem. Soc., 1949, vol. 71, no. 10, p. 3330. https://doi.org/10.1021/ja01178a016

    Article  CAS  Google Scholar 

  37. Lenzi, F. and Rapson, W.H., Effets ioniques spécifiques sur le taux de formation du ClO2 par la réaction chlorure–chlorate, Canad. J. Chem., 1968, vol. 46, no. 6, p. 979. https://doi.org/10.1139/v68-160

    Article  CAS  Google Scholar 

  38. Schmitz, G., Kinetics and mechanism of the iodate–iodide reaction and other related reactions, Phys. Chem. Chem. Phys., 1999, vol. 1, no. 8, p. 1909. https://doi.org/10.1039/a809291e

    Article  CAS  Google Scholar 

  39. Vogt, H., Balej, J., Bennett, J.E., Wintzer, P., Sheikh, S.A., Gallone, P., Vasudevan, S., and Pelin, K., Chlorine oxides and chlorine oxygen acids, in Ullmann’s Encyclopedia of Industrial Chemistry, Ullmann F., Ed, Berlin: Wiley Online Library, 2010, p. 622. https://doi.org/10.1002/14356007.a06_483.pub2

  40. Sant’Anna, R.T.P., Santos, C.M.P., Silva, G.P., Ferreira, R.J.R., Oliveira, A.P., Côrtes, C.E.S., and Faria, R.B., Kinetics and mechanism of chlorate-chloride reaction, J. Brazil. Chem. Soc., 2012, vol. 23, no. 8, p. 1543. https://doi.org/10.1590/S0103-50532012005000017

    Article  Google Scholar 

  41. Kabir, H., Ma, P.Y., Renn, N., Nicholas, N.W., and Cheng, I.F., Electrochemical determination of free chlorine on pseudo-graphite electrode, Talanta, 2019, vol. 205, p. 120101. https://doi.org/10.1016/j.talanta.2019.06.101

    Article  CAS  PubMed  Google Scholar 

  42. Lowe, E.R., Banks, C.E., and Compton, R.G., Gas sensing using edge-plane pyrolytic-graphite electrodes: electrochemical reduction of chlorine, Anal. Bioanal. Chem., 2005, vol. 382, p. 1169. https://doi.org/10.1007/s00216-005-3223-3

    Article  CAS  PubMed  Google Scholar 

  43. Raspi, G. and Pergola, F., Voltammetric behaviour of chlorites and chlorine dioxide on a platinized-platinum microelectrode with periodical renewal of the diffusion layer and its analytical applications, J. Electroanal. Chem., 1969, vol. 20, no. 3, p. 419. https://doi.org/10.1016/s0022-0728(69)80171-3

    Article  CAS  Google Scholar 

  44. Pergola, F., Guidelli, R., and Raspi, G., Potentiostatic study of heterogeneous chemical reactions. ClO2–ClO2–Cl-system on platinized platinum, J. Amer. Chem. Soc., 1970, vol. 92, no. 9, p. 2645. https://doi.org/10.1021/ja00712a010

    Article  CAS  Google Scholar 

  45. Lipsztajn, M., US Patent 4,767,510, 1988.

  46. Sinkaset, N., Nishimura, A.M., Pihl, J.A., and Trogler, W.C., Slow heterogeneous charge transfer kinetics for the \({\text{ClO}}_{2}^{ - }\)/ClO2 redox couple at platinum, gold, and carbon electrodes. Evidence for nonadiabatic electron transfer, J. Phys. Chem. A, 1999, vol. 103, no. 49, p. 10461. https://doi.org/10.1021/jp992693f10.1021/jp992693f

    Article  CAS  Google Scholar 

  47. Gomez-Gonzalez, A., Ibanez, J.G., Vasquez-Medrano, R., Zavala-Araiza, D., and Paramo-Garcia, U., Electrochemical paired convergent production of ClO, ECS Trans., 2009, vol. 20, no. 1, p. 91. https://doi.org/10.1149/1.3268376

    Article  CAS  Google Scholar 

  48. Gomez-Gonzalez, A., Ibanez, J.G., Vasquez-Medrano, R.C., Paramo-Garcia, U., and Zavala-Araiza, D., Cathodic production of ClO2 from NaClO3, J. Electrochem. Soc., 2009, vol. 156, no. 7, p. E113. https://doi.org/10.1149/1.3121588

    Article  CAS  Google Scholar 

  49. Tian, M., Li, Y.Y., Sun, H.C., Yang, L.J., and Li, Z.L., Preparation of chlorine dioxide by electrocatalytic reduction of sodium chlorate, Adv. Mater. Res., 2013, vols. 781–784, p. 342. https://doi.org/10.4028/www.scientific.net/amr.781-784.342

  50. Konev, D.V., Antipov, A.E., Vorotyntsev, M.A., Loktionov, P.A., Glazkov, A.T., Pichugov, R.D., and Petrov, M.M., Russian Patent 190893, 2018.

  51. Zader, P.A., Konev, D.V., Gun, J., Lev, O., and Vorotyntsev, M.A., Theoretical analysis of changes in the composition of the system in the course of electrolysis of bromide solution: pH dependence, Russ. J. Electrochem., 2022, vol. 58 (in press).

  52. Stanbury, D.M. and Figlar, J.N., Vanishingly slow kinetics of the ClO2/Cl reaction: its questionable significance in nonlinear chlorite reactions, Coordinat. Chem. Rev., 1999, vol. 187, no. 1, p. 223. https://doi.org/10.1016/S0010-8545(99)00092-2

    Article  CAS  Google Scholar 

  53. Mussini, T. and Longhi, P., Bromine, in Standard Potentials in Aqueous Solutions, Bard, A.J., Parsons, R., and Jordan, J., Eds., New York: Marcel Dekker, 1985, p. 78.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.D. Davydov and A.D. Modestov for their important comments on this paper.

Funding

This study was supported by the Russian Scientific Foundation (grant no. 20-63-46041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Konev or M. A. Vorotyntsev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

A tribute to outstanding electrochemist Oleg Aleksandrovich Petrii (1937–2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konev, D.V., Goncharova, O.A., Tolmachev, Y.V. et al. The Role of Chlorine Dioxide in the Electroreduction of Chlorates at Low pH. Russ J Electrochem 58, 978–988 (2022). https://doi.org/10.1134/S1023193522110088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522110088

Keywords:

Navigation