Skip to main content
Log in

Water-Soluble Phthalocyanine with Ionogenic Groups as a Molecular Template for Electropolymerization of 3,4-Ethylenedioxythiophene

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) in the presence of water-soluble sodium salt of zinc octa(3′,5′-dicarboxyphenoxy)phthalocyaninate containing 16 ionogenic carboxylate groups is studied. By using electrochemical and spectral methods of monitoring the course of the electrosynthesis the EDOT polymerization in the presence of phthalocyaninate is shown to proceed at higher rate compared to that in the presence of low-molecular electrolyte (sodium acetate). The electropolymerization acceleration is discussed in terms of templating effect of locally-ordered carboxylate groups of phthalocyaninate in analogy with the EDOT template electropolymerization in the presence of polyelectrolytes. Electronic and chemical structures, morphology, spectroelectrochemical and sensor properties (with respect to ammonia) of the PEDOT composite films obtained in the presence of water-soluble phthalocyaninate are studied for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. John, R. Reynolds, Barry, C. and Thompson, T.A.S., Handbook of Conducting Polymers, Fourth Edition—2 Volume Set; Reynolds, J.R., Thompson, B.C., and Skotheim, T.A., Eds.; CRC Press, 2019; ISBN 9781351660235

  2. Lange, U., Roznyatovskaya, N.V., and Mirsky, V.M., Conducting polymers in chemical sensors and arrays, Anal. Chim. Acta, 2008, vol. 614, p. 1.https://doi.org/10.1016/j.aca.2008.02.068

    Article  CAS  PubMed  Google Scholar 

  3. Borgohain, R., Kumar Boruah, P., and Baruah, S., Heavy-metal ion sensor using chitosan capped ZnS quantum dots. Sensors Actuators, B Chem., 2016, vol. 226, p. 534.https://doi.org/10.1016/j.snb.2015.11.118

    Article  CAS  Google Scholar 

  4. Sizun, T., Patois, T., Bouvet, M., and Lakard, B., Microstructured electrodeposited polypyrrole-phthalocyanine hybrid material, from morphology to ammonia sensing, J. Mater. Chem., 2012, vol. 22, p. 25246.https://doi.org/10.1039/c2jm35356c

    Article  CAS  Google Scholar 

  5. Patois, T., Sanchez, J.B., Berger, F., Fievet, P., Segut, O., Moutarlier, V., Bouvet, M., and Lakard, B., Elaboration of ammonia gas sensors based on electrodeposited polypyrrole—Cobalt phthalocyanine hybrid films, Talanta, 2013, vol. 117, p. 45.https://doi.org/10.1016/j.talanta.2013.08.047

    Article  CAS  PubMed  Google Scholar 

  6. Guo, Y., Hao, X., Tao, Y., Zhang, C., and Cheng, H., Preparation, characterizations and electrochromic properties of copolymers containing 5, 10, 15, 20-tetra(thienyl) porphyrin and thiophene derivatives, Synth. Met., 2019, vol. 258, p. 116202.https://doi.org/10.1016/j.synthmet.2019.116202

    Article  CAS  Google Scholar 

  7. Solis, C., Baigorria, E., Milanesio, M.E., Morales, G., Durantini, E.N., Otero, L., and Gervaldo, M., Electrochemical polymerization of EDOT modified Phthalocyanines and their applications as electrochromic materials with green coloration, and strong absorption in the Near-IR, Electrochim. Acta, 2016, vol. 213, p. 594.https://doi.org/10.1016/j.electacta.2016.07.086

    Article  CAS  Google Scholar 

  8. Pari, M. and Reddy, K.R.V., A Facile Cobalt(II) Tetra Amino Phthalocyanine Ingrained Poloy Aniline (PANI) Nano-fiber Film Layer Based Electrode Material for Amperometric Determination of Thiocyanate, J. Inorg. Organomet. Polym. Mater., 2020, vol. 30, p. 3511.https://doi.org/10.1007/s10904-020-01515-8

    Article  CAS  Google Scholar 

  9. Milczarek, G., Self-doped polyaniline films prepared by electropolymerization in the presence of sulfonated nickel phthalocyanine, Thin Solid Films, 2009, vol. 517, p. 6100.https://doi.org/10.1016/j.tsf.2009.04.055

    Article  CAS  Google Scholar 

  10. Vijayanathan, V., Venkatachalam, S., and Krishnamurthy, V.N., Oligomeric metallo phthalocyanine-incorporated conducting polymers, Synth. Met., 2000, vol. 114, p. 273.https://doi.org/10.1016/s0379-6779(00)00247-2

    Article  CAS  Google Scholar 

  11. Vijayanathan, V., Venkatachalam, S., and Krishnamurthy, V.N., Electroactive polymeric thin film based on polypyrrole incorporating metallophthalocyanine polymer, Polymer (Guildf), 1993, vol. 34, p. 1095.https://doi.org/10.1016/0032-3861(93)90235-3

    Article  CAS  Google Scholar 

  12. Muthuraman, G., Shim, Y.B., Yoon, J.H., and Won, M.S., Simultaneous immobilization of cobalt tetrasulfonated phthalocyanine during electropolymerization of pyrrole in presence of surfactants: A study of film morphology and its conductivity, Synth. Met., 2005, vol. 150, p. 165.https://doi.org/10.1016/j.synthmet.2005.02.002

    Article  CAS  Google Scholar 

  13. Gribkova, O., Kabanova, V., Tverskoy, V., and Nekrasov, A., Comparison of Optical Ammonia-Sensing Properties of Conducting Polymer Complexes with Polysulfonic Acids, Chemosensors, 2021, vol. 9, p. 206.https://doi.org/10.3390/chemosensors9080206

    Article  CAS  Google Scholar 

  14. Ismail, A.H., Mohd Yahya, N.A., Yaacob, M.H., Mahdi, M.A., and Sulaiman, Y., Optical ammonia gas sensor of poly(3,4-polyethylenedioxythiophene), polyaniline and polypyrrole: A comparative study, Synth. Met., 2020, vol. 260, p. 116294.https://doi.org/10.1016/j.synthmet.2020.116294

    Article  CAS  Google Scholar 

  15. Lakard, B., Carquigny, S., Segut, O., Patois, T., and Lakard, S., Gas Sensors Based on Electrodeposited Polymers, Metals (Basel), 2015, vol. 5, p. 1371.https://doi.org/10.3390/met5031371

    Article  Google Scholar 

  16. Kabanova, V., Gribkova, O., and Nekrasov, A., Poly(3,4-ethylenedioxythiophene) electrosynthesis in the presence of mixtures of flexible-chain and rigid-chain polyelectrolytes, Polymers (Basel), 2021, vol. 13, p. 3866.https://doi.org/10.3390/polym13223866

    Article  CAS  Google Scholar 

  17. Liu, W., Jensen, T.J., Fronczek, F.R., Hammer, R.P., Smith, K.M., and Vicente, M.G.H., Synthesis and cellular studies of nonaggregated water-soluble phthalocyanines, J. Med. Chem., 2005, vol. 48, p. 1033.https://doi.org/10.1021/jm049375b

    Article  CAS  PubMed  Google Scholar 

  18. MacHacek, M., Kollár, J., Miletin, M., Kučera, R., Kubát, P., Simunek, T., Novakova, V., and Zimcik, P., Anionic hexadeca-carboxylate tetrapyrazinoporphyrazine: Synthesis and in vitro photodynamic studies of a water-soluble, non-aggregating photosensitizer, RSC Adv., 2016, vol. 6, p. 10064.https://doi.org/10.1039/c5ra25881b

    Article  CAS  Google Scholar 

  19. Pigani, L., Heras, A., Colina, Á., Seeber, R., and López-Palacios, J., Electropolymerisation of 3,4-ethylenedioxythiophene in aqueous solutions, Electrochem. commun., 2004, vol. 6, p. 1192.https://doi.org/10.1016/j.elecom.2004.09.021

    Article  CAS  Google Scholar 

  20. Gribkova, O.L., Iakobson, O.D., Nekrasov, A.A., Cabanova, V.A., Tverskoy, V.A., and Vannikov, A.V., The influence of polyacid nature on poly(3,4-ethylenedioxythiophene) electrosynthesis and its spectroelectrochemical properties, J. Solid State Electrochem., 2016, vol. 20, p. 2991.https://doi.org/10.1007/s10008-016-3252-1

    Article  CAS  Google Scholar 

  21. Zozoulenko, I., Singh, A., Singh, S.K., Gueskine, V., Crispin, X., and Berggren, M., Polarons, Bipolarons, and Absorption Spectroscopy of PEDOT, ACS Appl. Polym. Mater., 2019, vol. 1, p. 83. https://doi.org/10.1021/acsapm.8b00061

  22. Garreau, S., Duvail, J.L., and Louarn, G., Spectroelectrochemical studies of poly(3,4-ethylenedioxythiophene) in aqueous medium, Synth. Met., 2001, vol. 125, p. 325.https://doi.org/10.1016/S0379-6779(01)00397-6

    Article  Google Scholar 

  23. Lukyanov, D.A., Vereshchagin, A.A., Soloviova, A.V., Grigorova, O.V., Vlasov, P.S., and Levin, O.V., Sulfonated Polycatechol Immobilized in a Conductive Polymer for Enhanced Energy Storage, ACS Appl. Energy Mater., 2021, vol. 4, p. 5070.https://doi.org/10.1021/acsaem.1c00639

    Article  CAS  Google Scholar 

  24. Gribkova, O.L., Iakobson, O.D., Nekrasov, A.A., Cabanova, V.A., Tverskoy, V.A., Tameev, A.R., and Vannikov, A.V., Ultraviolet-Visible-Near Infrared and Raman spectroelectrochemistry of poly(3,4-ethylenedioxythiophene) complexes with sulfonated polyelectrolytes. The role of inter- and intra-molecular interactions in polyelectrolyte, Electrochim. Acta, 2016, vol. 222, p. 409.https://doi.org/10.1016/j.electacta.2016.10.193

    Article  CAS  Google Scholar 

  25. Lokesh, K.S. and Adriaens, A., Electropolymerization of palladium tetraaminephthalocyanine: Characterization and supercapacitance behavior, Dye. Pigment., 2015, vol. 112, p. 192.https://doi.org/10.1016/j.dyepig.2014.06.034

    Article  CAS  Google Scholar 

  26. Aroca, R., Dilella, D.P., and Loutfy, R.O., Raman spectra of solid films-I. Metal-free phthalocyanine, J. Phys. Chem. Solids, 1982, vol. 43, p. 707.https://doi.org/10.1016/0022-3697(82)90235-9

    Article  CAS  Google Scholar 

  27. Peintler-Kriván, E., Tóth, P.S., and Visy, C., Combination of in situ UV-Vis-NIR spectro-electrochemical and a.c. impedance measurements: A new, effective technique for studying the redox transformation of conducting electroactive materials, Electrochem. commun., 2009, vol. 11, p. 1947.https://doi.org/10.1016/j.elecom.2009.08.025

    Article  CAS  Google Scholar 

  28. Alpatova, N.M., Rotenberg, Z.A., Ovsyannikova, E.V., Topolev, V.V., Grosheva, M.Y., Kirchmeyer, S., and Jonas, F., Poly(3,4-ethylenedioxythiophene) heterogeneity: A differential cyclic voltabsorptometry study, Russ. J. Electrochem., 2004, vol. 40, p. 917.https://doi.org/10.1023/B:RUEL.0000041358.46069.d5

    Article  CAS  Google Scholar 

  29. Yamato, H., Kai, K.I., Ohwa, M., Wernet, W., and Matsumura, M., Mechanical, electrochemical and optical properties of poly(3,4-ethylenedioxythiophene)/sulfated poly(β-hydroxyethers) composite films, Electrochim. Acta, 1997, vol. 42, p. 2517.https://doi.org/10.1016/S0013-4686(96)00442-2

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The present work is dedicated to the memory of Oleg Aleksadrovich Petrii, the outstanding researcher, teacher, and cordial interlocutor who exerted invaluable influence on the research biography of the authors (О.L. Gribkova and А.А. Nekrasov).

The electron absorption spectra in UV-, visible, and near IR-regions, Raman-spectra, and atomic-force microscopy images of the film surface were registered with the equipment of CKP FMI IPCE RAS.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-29-08048_mk, and the Ministry of Education and Science RF (study of sensor properties of developed composites).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. L. Gribkova or A. A. Nekrasov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

A tribute to outstanding electrochemist Oleg Aleksandrovich Petrii (1937–2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribkova, O.L., Kabanova, V.A., Yagodin, A.V. et al. Water-Soluble Phthalocyanine with Ionogenic Groups as a Molecular Template for Electropolymerization of 3,4-Ethylenedioxythiophene. Russ J Electrochem 58, 957–967 (2022). https://doi.org/10.1134/S1023193522110076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522110076

Keywords:

Navigation