Skip to main content
Log in

Algorithm for Theoretical Assessment of the Electrochemical Stability of Electrolytes in Lithium-Ion Batteries by the Example of LiBF4 in the EC/DMC Mixture

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The resistance of electrolytes to oxidative decomposition on the positive electrode surface is one of barriers that complicate the development of rechargeable batteries with the high energy density. The electrochemical stability of electrolytes is directly related to the composition and structure of solvate complexes formed at salt dissolution. Based on a combination of methods of molecular dynamics and quantum chemistry it is possible to develop the algorithm for theoretical assessment of the electrolyte resistance to anodic oxidation as a function of its composition. This algorithm can be used for selecting versions among the studied mixtures of solvents and lithium salts with the aim of developing new electrolytes stable up to 5 and 6 V. In this study, the methods of classical molecular dynamics and quantum chemistry are used for finding the structure of solvate complexes formed in LiBF4 solutions in the binary mixture ethylene carbonate (EC)/dimethylcarbonate (DMC). The quantum-chemical assessment of the thermodynamic and oxidation stability of solvate complexes makes it possible to find which complexes make the most considerable contribution to the electrochemical stability of the electrolyte system and calculate the additive potential of electrolyte oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Fridman, K., Sharabi, R., Elazari, R., Gershinsky, G., Markevich, E., Salitra, G., Aurbach, D., Garsuch, A., and Lampert, J., A new advanced lithium-ion battery: Combination of high performance amorphous columnar silicon thin film anode, 5V LiNi0.5Mn1.5O4 spinel cathode and fluoroethylene carbonate-based electrolyte solution, Electrochem. Commun., 2013, vol. 33, p. 31.

    Article  CAS  Google Scholar 

  2. Hu, L., Amine, K., and Zhang, Z., Fluorinated electrolytes for 5-V Li-ion chemistry: Dramatic enhancement of LiNi0.5Mn1.5O4/graphite cell performance by a lithium reservoir, Electrochem. Commun., 2014, vol. 44, p. 34.

    Article  CAS  Google Scholar 

  3. Fan, X. and Wang, C., High-voltage liquid electrolytes for Li batteries: progress and perspectives, Chem. Soc. Rev., 2021, vol. 50, no. 18, p. 10486.

    Article  CAS  PubMed  Google Scholar 

  4. Ling, J., Karuppiah, Ch., Krishnan, S.G., Reddy, M.V., Misnon, I.I., Ab Rahim, M.H., Yang, Ch.-Ch., and Jose, R., Phosphate polyanion materials as high-voltage lithium-ion battery cathode: A review, Energy Fuels, 2021, vol. 35, no. 13, p. 10428.

    Article  CAS  Google Scholar 

  5. Ji, X., Xia, Q., Xu, Y., Feng, H., Wang, P., and Tan, Q., A review on progress of lithium-rich manganese-based cathodes for lithium-ion batteries, J. Power Sources, 2021, vol. 487, p. 229362.

    Article  CAS  Google Scholar 

  6. Han, J., Kim, K., Lee, Y., and Choi, N.-S., Scavenging materials to stabilize LiPF6 containing carbonate-based electrolytes for Li-ion batteries, Adv. Mater., 2019, vol. 31, no. 20, p. 1804822.

    Article  Google Scholar 

  7. Zhao, W., Ji, Y., Zhang, Zh., Lin, M., Wu, Z., Zheng, Xi, Li, Qi, and Yang, Y., Recent advances in the research of functional electrolyte additives for lithium-ion batteries, Curr. Opin. Electrochem., 2017, vol. 6, no. 1, p. 84.

    Article  CAS  Google Scholar 

  8. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004, vol. 104, no. 10, p. 4303.

    Article  CAS  PubMed  Google Scholar 

  9. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 2014, vol. 114, no. 23, p. 11503.

    Article  CAS  PubMed  Google Scholar 

  10. Borodin, O., Challenges with prediction of battery electrolyte electrochemical stability window and guiding the electrode–electrolyte stabilization, Curr. Opin. Electrochem., 2019, vol. 13, p. 86.

    Article  CAS  Google Scholar 

  11. Xu, K., Zhuang, G.V., Allen, J.L., Lee, U., Zhang, Sh.S., Ross, Ph.N., and Jow, T.R., Syntheses and characterization of lithium alkyl mono- and dicarbonates as components of surface films in Li-ion batteries, J. Phys. Chem. B, 2006, vol. 110, no. 15, p. 7708.

    Article  CAS  PubMed  Google Scholar 

  12. Nazri, M., Liquid Electrolytes: Some Theoretical and Practical Aspects, Lithium Batteries, Boston, MA: Springer US, 2009. pp. 509–529.

    Google Scholar 

  13. Kulova, T.L. and Skundin, A.M., High-voltage materials for positive electrodes of lithium ion batteries (Review), Russ. J. Electrochem., 2016, vol. 52, p. 501.

    Article  Google Scholar 

  14. Watanabe, Y., Kinoshita, Sh., Wada, S., Hoshino, K., Morimoto, H., and Tobishima, Sh., Electrochemical properties, and lithium-ion solvation behavior of sulfone–ester mixed electrolytes for high-voltage rechargeable lithium cells, J. Power Sources, 2008, vol. 179, no. 2, p. 770.

    Article  CAS  Google Scholar 

  15. Abouimrane, A., Belharouak, I., and Amine K., Sulfone-based electrolytes for high-voltage Li-ion batteries, Electrochem. Commun., 2009, vol. 11, no. 5, p. 1073.

    Article  CAS  Google Scholar 

  16. Wang, X., Xue, W., Hu, K., Li, Y., Li, Y., and Huang, R., Adiponitrile as lithium-Iion battery electrolyte additive: A positive and peculiar effect on high-voltage systems, ACS Appl. Energy Mater., 2018, vol. 1, no. 10, p. 5347.

    CAS  Google Scholar 

  17. Li, S., Zhao, D., Wang, P., Cui, X., and Tang, F., Electrochemical effect, and mechanism of adiponitrile additive for high-voltage electrolyte, Electrochim. Acta, 2016, vol. 222, p. 668.

    Article  CAS  Google Scholar 

  18. Lu, Y., Xu, Sh., Shu, J., Aladat, W.I.A., and Archer, L.A., High voltage LIB cathodes enabled by salt-reinforced liquid electrolytes, Electrochem. Commun., 2015, vol. 51, p. 23.

    Article  Google Scholar 

  19. Xue, Z.-M., Zhao, B.-H., and Chen, C.-H., A new lithium salt with 3-fluoro-1,2-benzenediolato and lithium tetrafluoroborate for lithium battery electrolytes, J. Power Sources, 2011, vol. 196, no. 15, p. 6478.

    Article  CAS  Google Scholar 

  20. Bushkova, O.V., Yaroslavtseva, T.V., and Dobrovolsky, Y.A., New lithium salts in electrolytes for lithium-ion batteries (Review), Russ. J. Electrochem., 2017, vol. 53, no. 7, p. 677.

    Article  CAS  Google Scholar 

  21. Xu, M., Liu, Y., Li, Bin, Li, W., Li, X., and Hu, Sh., Tris (pentafluorophenyl) phosphine: An electrolyte additive for high voltage Li-ion batteries, Electrochem. Commun., 2012, vol. 18, p. 123.

    Article  CAS  Google Scholar 

  22. Xing, L. and Borodin, O., Oxidation induced decomposition of ethylene carbonate from DFT calculations—Importance of explicitly treating surrounding solvent, Phys. Chem. Chem. Phys., 2012, vol. 14, no. 37, p. 12838.

    Article  CAS  PubMed  Google Scholar 

  23. Xing, L., Vatamanu, J., Borodin, O., Smith, G.D., and Bedrov, D., Electrode/electrolyte interface in sulfolane-based electrolytes for Li ion batteries: A molecular dynamics simulation study, J. Phys. Chem. C, 2012, vol. 116, no. 45, p. 23871.

    Article  CAS  Google Scholar 

  24. Narayanan, K.A., Oldiges, K., Winter, M., Heuer, A., Cekic-Laskovic, I., Holm, Ch., and Smiatek, J., Electrolyte solvents for high voltage lithium-ion batteries: Ion correlation and specific anion effects in adiponitrile, Phys. Chem. Chem. Phys. Royal Soc. Chem., 2018, vol. 20, no. 40, p. 25701.

    Article  Google Scholar 

  25. Borodin, O., Behl, W., and Jow, T.R., Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes, J. Phys. Chem. C, 2013, vol. 117, no. 17, p. 8661.

    Article  CAS  Google Scholar 

  26. Zhang, X., Pugh, J.K., and Ross, P.N., Computation of thermodynamic oxidation potentials of organic solvents using density functional theory, J. Electrochem. Soc., 2001, vol. 148, no. 5, p. E183.

    Article  CAS  Google Scholar 

  27. Borodin, O. and Jow, T.R., Quantum chemistry studies of the oxidative stability of carbonate, sulfone and sulfonate-based electrolytes doped with \({\text{BF}}_{4}^{ - },\) \({\text{PF}}_{6}^{ - }\) anions, ECS Trans., 2019, vol. 33, no. 28, p. 77.

    Article  Google Scholar 

  28. Han, Y.-K., Yoo, J., and Yim, T., Computational screening of phosphite derivatives as high-performance additives in high-voltage Li-ion batteries, RSC Adv., 2017, vol. 7, no. 32, p. 20049.

    Article  CAS  Google Scholar 

  29. Yu, Z., Wang, H., Kong, X., Huang, W., Tsao, Y., Mackanic, D.G., Wang, K., Wang, X., Huang, W., Choudhury, S., Zheng, Yu, Amanchukwu, Ch.V., Hung, S.T., Ma, Yu, Lomeli, E.G., Qin, J., Cui, Yi, and Bao, Zh., Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries, Nat. Energy, 2020, vol. 5, no. 7, p. 526.

    Article  CAS  Google Scholar 

  30. Borodin, O., Olguin, M., Spear, C.E., Leiter, K.W., and Knap, J., Towards high throughput screening of electrochemical stability of battery electrolytes, Nanotechnology, 2015, vol. 26, no. 35, p. 354003.

    Article  PubMed  Google Scholar 

  31. Zhang, J., Yang, J., Yang, L., Lu, H., Liu, H., and Zheng, B., Exploring the redox decomposition of ethylene carbonate-propylene carbonate in Li-ion batteries, Mater. Adv., 2021, vol. 2, no. 5, p. 1747.

    Article  CAS  Google Scholar 

  32. Seo, D.M., Borodin, O., Balogh, D., O’Connell, M., Ly, Q., Han, S.-D., Passerini, St., and Henderson, W.A., Electrolyte solvation, and ionic association III. Acetonitrile-lithium salt mixtures–Transport properties, J. Electrochem. Soc., 2013, vol. 160, no. 8, p. A1061.

    Article  CAS  Google Scholar 

  33. Hou, T., Yang, G., Rajput, N.N., Self, J., Park, S.-W., Nanda, J., and Persson, K.A., The influence of FECon the solvation structure and reduction reaction of LiPF6/ECelectrolytes and its implication for solid electrolyte interphase formation, Nano Energy, 2019, vol. 64, p. 103881.

    Article  CAS  Google Scholar 

  34. Cheeseman, J.R., Trucks, G.W., Keith, T.A., and Frisch, M.J., A comparison of models for calculating nuclear magnetic resonance shielding tensors, J. Chem. Phys., 1996, vol, 104, no. 14, p. 5497.

    Article  CAS  Google Scholar 

  35. Borodin, O., Behl, W., and Jow, T.R., Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes, J. Phys. Chem. C, 2013, vol. 117, no. 17, p. 8661.

    Article  CAS  Google Scholar 

  36. Delp, S.A., Borodin, O., Olguin, M., Eisner, C.G., Allen, J.L., Jow, T., and Richard, et al., Importance of reduction and oxidation stability of high voltage electrolytes and additives, Electrochim. Acta, 2016, vol. 209, p. 498.

    Article  CAS  Google Scholar 

  37. Tomasi, J., Mennucci, B., and Cammi, R., Quantum mechanical continuum solvation models, Chem. Rev., 2005, vol. 105, no. 8, p. 2999.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, J., Yang, J., Yang, L., Lu, H., Liu, H., and Zheng, B., Exploring the redox decomposition of ethylene carbonate–propylene carbonate in Li-ion batteries, Mater. Adv., 2021, vol. 2, no. 5, p. 1747.

    Article  CAS  Google Scholar 

  39. Abe, K., Hattori, T., Kawabe, K., Ushigoe, Y., and Yoshitake, H., Functional Electrolytes, J. Electrochem. Soc, 2007, vol. 154, no. 8, p. A810.

    Article  CAS  Google Scholar 

  40. Abe, K., Miyoshi, K., Hattori, T., Ushigoe, Y., and Yoshitake, H., Functional electrolytes: Novel type additives for cathode materials, providing high cyclability performance, J. Power Sources, 2006, vol. 153, no. 2, p. 328.

    Article  CAS  Google Scholar 

  41. Xu, K., Ding, S.P., and Jow, T.R., Toward reliable values of electrochemical stability limits for electrolytes, J. Electrochem. Soc., 1999, vol. 146, no. 11, p. 4172.

    Article  CAS  Google Scholar 

  42. Azcarate, I., Yin, W., Méthivier, Ch., Ribot, Fr., Laberty-Robert, Ch., and Grimaud, A., Assessing the oxidation behavior of EC:DMC based electrolyte on non-catalytically active surface, J. Electrochem. Soc., 2020, vol. 167, no. 8, p. 080530.

    Article  CAS  Google Scholar 

  43. Abe, K., Miyoshi, K., Hattori, T., Ushigoe, Y., and Yoshitake, H., Functional electrolytes: Synergetic effect of electrolyte additives for lithium-ion battery, J. Power Sources, 2008, vol. 184, no. 2, p. 449.

    Article  CAS  Google Scholar 

  44. Mahmood, N., Tang, T., and Hou, Y., Nanostructured anode materials for lithium-ion batteries: Progress, challenge and perspective, Adv. Energy Mater., 2016, vol. 6, no. 17, p. 1600374.

    Article  Google Scholar 

  45. Smith, L. and Dunn, B., Opening the window for aqueous electrolytes, Science, 2015, vol. 350, no. 6263, p. 918.

    Article  CAS  PubMed  Google Scholar 

  46. Sanginov, E.A., Borisevich, S.S., Kayumov, R.R., Istomina, A.S., Evshchik, E.Yu., Reznitskikh, O.G., Yaroslavtseva, T.V., Melnikova, T.I., Dobrovolsky, Yu.A., and Bushkova, O.V., Lithiated Nafion plasticised by a mixture of ethylene carbonate and sulfolane, Electrochim. Acta, 2021, vol. 373, p. 137914.

    Article  CAS  Google Scholar 

  47. Shaw, D.E., Schrödinger: Desmond Molecular Dynamics System: 2021–4, New York: Schrödinger, 2021.

    Google Scholar 

  48. Lu, C., Wu, Ch., Ghoreishi, D., Chen, W., Wang, L., Damm, W., Ross, G.A., Dahlgren, M.K., Russell, E., Von Bargen, Ch.D., Abel, R., Friesner, R.A., and Harder, E.D., OPLS4: Improving force field accuracy on challenging regimes of chemical space, J. Chem. Theory Comput., 2021, vol. 17, no. 7, p. 4291.

    Article  CAS  PubMed  Google Scholar 

  49. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., and Hratch D.J., GAUSSIAN: Revision C.01. Wallingford CT: Gaussian, 2016.

    Google Scholar 

  50. Zhao, Y., Schultz, N.E., and Truhlar, D.G., Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions, J. Chem. Theory Comput., 2006, vol. 2, no. 2, p. 364.

    Article  PubMed  Google Scholar 

  51. Schäfer, A., Huber, C., and Ahlrichs, R., Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr, J. Chem. Phys., 1994, vol. 100, no. 8, p. 5829.

    Article  Google Scholar 

  52. Grimme, S., Antony, J., Ehrlich, S., and Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 2010, vol. 132, no. 15, p. 154104.

    Article  PubMed  Google Scholar 

  53. Marenich, A.V., Cramer, C.J., and Truhlar, D.G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B., 2009, vol. 113, no. 18, p. 6378.

    Article  CAS  PubMed  Google Scholar 

  54. Morris, D.F.C. and Short, E.L., The Born-Fajans-Haber correlation, Nature, 1969, vol. 224, no. 5223, p. 950.

    Article  CAS  Google Scholar 

  55. Perelygin, I.S., Infrared spectra and solvation of ions, in Ionic Solvation, Moscow: Nauka, 1987, pp. 100–199.

    Google Scholar 

  56. Han, Y.-K., Lee, K., Yoo, J., and Huh, Y.-S., Virtual screening of borate derivatives as high-performance additives in lithium-ion batteries, Theor. Chem. Acc., 2014, vol. 133, no. 10, p. 1562.

    Article  Google Scholar 

  57. Curtiss, L.A., Redfern, P.C., and Raghavachari, K., Gaussian-4 theory, J. Chem. Phys., 2007, vol. 126, no. 8, p. 084108.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Center of Bio and Chemoinformation of the Institute of Biodesign and Modeling of Complex Systems at the Sechenov First State Medical University for the possibility of carrying out the quantum chemical calculations by using their computational server.

Funding

The study was supported by the Russian Scientific Foundation (grant no. 22-23-00846 “Predicting the Stability of Lithium-Conducting Solvents”.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Evshchik.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

A tribute to outstanding electrochemist Oleg Aleksandrovich Petrii (1937–2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisevich, S.S., Evshchik, E.Y., Il’ina, M.G. et al. Algorithm for Theoretical Assessment of the Electrochemical Stability of Electrolytes in Lithium-Ion Batteries by the Example of LiBF4 in the EC/DMC Mixture. Russ J Electrochem 58, 1008–1019 (2022). https://doi.org/10.1134/S1023193522110040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522110040

Keywords:

Navigation