Skip to main content
Log in

Electrodes of Germanium and Germanium Phosphide Nanowires in Lithium-Ion and Sodium-Ion Batteries (A Review)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Basic studies in the application of germanium nanowires obtained by electrolysis of aqueous solutions, as well as germanium phosphide nanorods, as negative electrodes for lithium-ion and sodium-ion batteries carried out in the Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, are concisely reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. Petrii, O.A., Activity of electrolytically deposited platinum and ruthenium by the electrooxidation of methanol, Dokl. Akad. Nauk SSSR, 1965, vol. 160, p. 871.

    CAS  Google Scholar 

  2. Petrii, O.A., Electrosynthesis of nanostructures and nanomaterials, Russ. Chem. Rev., 2015, vol. 84, p. 159.

    Article  CAS  Google Scholar 

  3. Gavrilin, I.M., Smolyaninov, V.A., Dronov, A.A., Gavrilov, S.A., Trifonov, A.Yu., Kulova, T.L., Kuz’mina, A.A., and Skundin, A.M., Electrochemical insertion of sodium into nanostructured materials based on germanium, Mendeleev Commun., 2018, vol. 28, p. 659.

    Article  CAS  Google Scholar 

  4. Gavrilin, I.M., Smolyaninov, V.A., Dronov, A.A., Gavrilov, S.A., Trifonov, A.Yu., Kulova, T.L., Kuz’mina, A.A., and Skundin, A.M., Study of the Process of Reversible Insertion of Lithium into Nanostructured Materials Based on Germanium. Russ. J. Electrochem., 2018, vol. 54, p. 907.

    Article  Google Scholar 

  5. Kulova, T.L., Gavrilin, I.M., Kudryashova, Yu.O., and Skundin, A.M., A LiNi0.8Co0.15Al0.05O2/Ge electrochemical system for lithium-ion batteries, Mendeleev Commun., 2020, vol. 30, p. 775.

    Article  CAS  Google Scholar 

  6. Gavrilin, I.M., Kudryashova, Yu.O., Kulova, T.L., Skundin, A.M., and Gavrilov, S.A., The effect of growth temperature on the process of insertion/extraction of sodium into germanium nanowires formed by electrodeposition using indium nanoparticles, Mater. Lett., 2021, vol. 287, March 15. Article no. 129303.

  7. Gavrilin, I.M., Kudryashova, Yu.O., Kuz’mina, A.A., Kulova, T.L., Skundin, A.M., Emets, V.V., Volkov, R.L., Dronov, A.A., Borgardt, N.I., and Gavrilov, S.A., High-rate and low-temperature performance of germanium nanowires anode for lithium-ion batteries, J. Electroanalyt. Chem., 2021, vol. 888, Article no. 115209.

  8. Emets, V.V., Gavrilin, I.M., Kulova, T.L., Skundin, A.M., Sharafutdinova, A.M., and Gavrilov, S.A., Dynamics of changes in the kinetic parameters of germanium nanowires during lithiation/delithiation in a wide temperature range, J. Electroanalyt. Chem., 2021, vol. 902, Article no. 115811.

  9. Kulova, T.L., Gavrilin, I.M., Kudryashova, Yu.O., Skundin, A.M., and Gavrilov, S.A., Cyclability enhancement and decreasing the irreversible capacity of anodes based on germanium nanowires for lithium-ion batteries, Mendeleev Commun., 2021, vol. 31, p. 842.

    Article  CAS  Google Scholar 

  10. Kulova, T.L., Kudryashova, Yu.O., Gavrilin, I.M., Skundin, A.M., and Gavrilov, S.A., RF Patent 2743576, 2021, Byull. Izobret. no 5 (application no. 2020127043, 12.08.2020).

  11. Kulova, T.L. and Skundin, A.M., Germanium in Lithium-Ion and Sodium-Ion Batteries (A Review), Russ. J. Electrochem., 2021, vol. 57, p. 1105.

    Article  CAS  Google Scholar 

  12. Chan, C.K., Zhang, X.F., and Cui, Y., High-Capacity Li Ion Battery Anodes Using Ge Nanowires, Nano Lett., 2008, vol. 8, p. 307.

    Article  CAS  Google Scholar 

  13. Farbod, B., Cui, K., Kupsta, M., Kalisvaart, W.P., Memarzadeh, E., Kohandehghan, A., Zahiri, B., and Mitlin, D., Array geometry dictates electrochemical performance of Ge nanowire lithium-ion battery anodes, J. Mater. Chem. A, 2014, vol. 2, p. 16770.

    Article  CAS  Google Scholar 

  14. Liu, X.H., Huang, S., Picraux, S.T., Li, J., Zhu, T., and Huang, J.Y., Reversible Nanopore Formation in Ge Nanowires during Lithiation–Delithiation Cycling: An In Situ Transmission Electron Microscopy Study, Nano Lett., 2011, vol. 11, p. 3991.

    Article  CAS  Google Scholar 

  15. Mullane, E., Kennedy, T., Geaney, H., Dickinson, C., and Ryan, K.M., Synthesis of Tin Catalyzed Silicon and Germanium Nanowires in a Solvent–Vapor System and Optimization of the Seed/Nanowire Interface for Dual Lithium Cycling, Chem. Mater., 2013, vol. 25, p. 1816.

    Article  CAS  Google Scholar 

  16. Kim, G.-T., Kennedy, T., Brandon, M., Geaney, H., Ryan, K.M., Passerini, S., and Appetecchi G.B., Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes, ACS Nano, 2017, vol. 11, p. 5933.

    Article  CAS  Google Scholar 

  17. Pandres, E.P., Olson, J.Z., Schlenker, C.W., and Holmberg, V.C., Germanium Nanowire Battery Electrodes with Engineered Surface-Binder Interactions Exhibit Improved Cycle Life and High Energy Density without Fluorinated Additives, ACS Appl. Energy Mater., 2019, vol. 2, p. 6200.

    CAS  Google Scholar 

  18. Kennedy, T., Mullane, E., Geaney, H., Osiak, M., O’Dwyer, C., and Ryan, K.M., High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network, Nano Lett., 2014, vol. 14, p. 716.

    Article  CAS  Google Scholar 

  19. Silberstein, K.E., Lowe, M.A.,Richards, B., Gao, J., Hanrath, T., and Abruña, H.D., Operando X-ray Scattering and Spectroscopic Analysis of Germanium Nanowire Anodes in Lithium Ion Batteries, Langmuir, 2015, vol. 31, p. 2028.

    Article  CAS  Google Scholar 

  20. Yuan, F.-W., Yang, H.-J., and Tuan, H.-Y., Alkanethiol-Passivated Ge Nanowires as High-Performance Anode Materials for Lithium-Ion Batteries: The Role of Chemical Surface Functionalization, ACS Nano, 2012, vol. 6, p. 9932.

    Article  CAS  Google Scholar 

  21. Gu, J., Collins, S.M., Carim, A.I., Hao, X., Bartlett, B.M., and Maldonado, S., Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid–liquid–solid process in water at ambient pressure and temperature for energy storage, Nano Lett., 2012, vol. 12, p. 4617.

    Article  CAS  Google Scholar 

  22. Ma, L., Fahrenkrug, E., Gerber, E., Crowe, A.J., Venable, F., Bartlett, B.M., and Maldonado, S., High-Performance Polycrystalline Ge Microwire Film Anodes for Li Ion Batteries, ACS Energy Lett., 2017, vol. 2, p. 238.

    Article  CAS  Google Scholar 

  23. Hao, J., Yang, Y., Zhao, J., Liu, X., Endres, F., Chi, C., Wang, B., Liu, X., and Li, Y., Ionic liquid electrodeposition of strain-released Germanium nanowires as stable anodes for lithium ion batteries, Nanoscale, 2017, vol. 9, p. 8481.

    Article  CAS  Google Scholar 

  24. Chi, C., Hao, J., Liu, X., Ma, X., Yang, Y., Liu, X., Endres, F., Zhao, J., and Li, Y., UV-assisted, Template-free Electrodeposition of Germanium Nanowire Cluster Arrays from an Ionic Liquid for Anodes in Lithium-ion batteries, New J. Chem., 2017, vol. 41, p. 15210.

    Article  CAS  Google Scholar 

  25. Mullane, E., Kennedy, T., Geaney, H., and Ryan, K.M., A Rapid, Solvent-Free Protocol for the Synthesis of Germanium Nanowire Lithium-Ion Anodes with a Long Cycle Life and High-Rate Capability, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 18800.

    Article  CAS  Google Scholar 

  26. Purbaix, M., Atlas d’équilibres electrochimiques, Paris: Gauthier-Villars, 1963.

    Google Scholar 

  27. Carim, A. I., Collins, S.M., Foley, J.M., and Maldonado, S., Benchtop Electrochemical Liquid–Liquid–Solid Growth of Nanostructured Crystalline Germanium, J. Amer. Chem. Soc., 2011, vol. 133, p. 13292.

    Article  CAS  Google Scholar 

  28. Fahrenkrug, E., Gu, J., Jeon, S., Veneman, P.A., Goldman, R.S., and Maldonado, S., Room-Temperature Epitaxial Electrodeposition of Single-Crystalline Germanium Nanowires at the Wafer Scale from an Aqueous Solution, Nano Lett., 2014, vol. 14, p. 847.

    Article  CAS  Google Scholar 

  29. Gromov, D.G., Pavlova, L.M., Savitskii, A.I., and Trifonov, A.Yu., Investigation of the early stages of condensation of Ag and Au on the amorphous carbon surface during thermal evaporation under vacuum, Phys. Solid State, 2015, vol. 57, p. 173.

    Article  CAS  Google Scholar 

  30. Gavrilin, I.M., Gromov, D.G., Dronov, A.A., Dubkov, S.V., Volkov, R.L., Trifonov, A.Yu., Borgardt, N.I., and Gavrilov, S.A., Effect of electrolyte temperature on the cathodic deposition of Ge nanowires on in and Sn particles in aqueous solutions, Semiconductors, 2017, vol. 51, p. 1067.

    Article  CAS  Google Scholar 

  31. Kulova, T.L., Mironenko, A.A., Skundin, A.M., Rudy, A.S., Naumov, V.V., and Pukhov, D.E., Study of Silicon Composite for Negative Electrode of Lithium-Ion Battery, Int. J. Electrochem. Sci., 2016, vol. 11, p. 1370.

    CAS  Google Scholar 

  32. Lee, G.H., Shim, H.W., and Kimn, D.W., Superior long-life and high-rate Ge nanoarrays anchored on Cu/C nanowire frameworks for Li-ion battery electrodes, Nano Energy, 2015, vol. 13, p. 218.

    Article  CAS  Google Scholar 

  33. Guo, W., Mei, L., Feng, Q., and Ma, J., Facile synthesis of Ge/C nanocomposite as superior battery anode material, Mater. Chem. Phys., 2015, vol. 168, p. 6.

    Article  CAS  Google Scholar 

  34. Rudawski, N.G., Yates, B.R., Holzworth, M.R., Jones, K.S., Elliman, R.G., and Volinsky, A.A., Ion beam-mixed Ge electrodes for high-capacity Li rechargeable batteries, J. Power Sources, 2013, vol. 223, p. 336.

    Article  CAS  Google Scholar 

  35. Al-Obeidi, A., Kramer, D., Thompson, C.V., and Monig, R., Mechanical stresses and morphology evolution in germanium thin film electrodes during lithiation and delithiation, J. Power Sources, 2015, vol. 297, p. 472.

    Article  CAS  Google Scholar 

  36. Laforge, B., Levan-Jodin, L., Salot, R., and Billard, A., Study of Germanium as Electrode in Thin-Film Battery, J. Electrochem. Soc., 2008, vol. 155, p. A181.

    Article  CAS  Google Scholar 

  37. Yoon, T., Song, G., Harzandi, A.M., Ha, M., Choi, S., Shadman, S., Ryu, J., Bok, T., Park, S., and Kim, K.S., Intramolecular deformation of zeotype-borogermanate toward three-dimensional porous germanium anode for high-rate lithium storage, J. Mater. Chem. A, 2018, vol. 6. p. 15961. https://doi.org/10.1039/c8ta04626c

    Article  CAS  Google Scholar 

  38. Yan, S., Song, H., Lin, S., Wu, H., Shi, Y.i., and Yao, J., GeO2 Encapsulated Ge Nanostructure with Enhanced Lithium-Storage Properties, Adv. Funct. Mater., 2019, vol. 29, p. 1807946. https://doi.org/10.1002/adfm.v29.810.1002/adfm.201807946

    Article  Google Scholar 

  39. Zhang, S., Zheng, Y., Huang, X., Hong, J., Cao, B., Hao, J., Fan, Q., Zhou, T., and Guo, Z., Structural engineering of hierarchical micro-nanostructured Ge–C framework by controlling the nucleation for ultralong-life Li storage, Adv. Energy Mater., 2019, vol. 9, p. 1900081. https://doi.org/10.1002/aenm.v9.19

    Article  Google Scholar 

  40. Fang, S., Shen, L., Li, S., Kim, G.-T., Bresser, D., Zhang, H., Zhang, X., Maier, J., and Passerini, S., Alloying reaction confinement enables high-capacity and stable anodes for lithium-ion batteries, ACS Nano, 2019, vol. 13, p. 9511. https://doi.org/10.1021/acsnano.9b04495

    Article  CAS  PubMed  Google Scholar 

  41. Shang, D., Wub, W., Guo, Y., Gu, J., Hua, F., Cao, Z., Li, B., and Yang, S., Room-temperature sodium thermal reaction towards electrochemically active metals for lithium storage, J. Colloid Interface Sci., 2019, vol. 551, p. 10. https://doi.org/10.1016/j.jcis.2019.04.100

    Article  CAS  PubMed  Google Scholar 

  42. Chen, Y., Ma, L., Shen, X., Ji, Z., Yuan, A., Xu, K., and Shah, S.A., In-situ synthesis of Ge/reduced graphene oxide composites as ultra high rate anode for lithium-ion battery, J. Alloys Comp., 2019, vol. 801, p. 90. https://doi.org/10.1016/j.jallcom.2019.06.074

    Article  CAS  Google Scholar 

  43. Liu, F., Wang, Y., Shi, J., Lin, J., Zhou, W., and Pan, A., A new strategy to prepare Ge/GeO2-reduced graphene oxide microcubes for high-performance lithium-ion batteries, Electrochim. Acta, 2019, vol. 318, p. 314. https://doi.org/10.1016/j.electacta.2019.06.076

    Article  CAS  Google Scholar 

  44. Fang, Y., Liu, R., Zeng, L., Liu, J., Xu, L., He, X., Huang, B., Chen, Q., Wei, M., and Qian, Q., Preparation of Ge/N, S co-doped ordered mesoporous carbon composite and its long-term cycling performance of lithium-ion batteries, Electrochim. Acta, 2019, vol. 318, p. 737. https://doi.org/10.1016/j.electacta.2019.06.123

    Article  CAS  Google Scholar 

  45. Churikov, A.V., The Diffusion Mathematics as Applied to Lithium Electrochemical Systems, Moscow: Nauka, 2015 (in Russian).

    Google Scholar 

  46. Tuseeva, E.K., Kulova, T.L., and Skundin, A.M., Temperature Effect on the Behavior of a Lithium Titanate Electrode Russ. J. Electrochem., 2018, vol. 54, p. 1186.

    Article  Google Scholar 

  47. Skundin, A., Kulova, T., Novikova, S., Chekannikov, A., and Kudryashova, Yu., Temperature effect on behavior of electrodes based on sodium vanadophosphate, Int. J. Electrochem. Sci., 2018, vol. 13, p. 12118. https://doi.org/10.20964/2018.12.87

    Article  CAS  Google Scholar 

  48. Wang, Y., Wang, P., Zhao, D., Hu B., Du, Y., Xu, H., and Chang, K., Thermodynamic description of the Ge–Na and Ge–K systems using the CALPHAD approach supported by first-principles calculations, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2012, vol. 37, p. 72.

    Article  CAS  Google Scholar 

  49. Lu, X., Adkins, E.R., He, Y., Zhong, L., Luo, L., Mao, S.X., Wang, C.-M., and Korgel, B.A., Germanium as a Sodium Ion Battery Material: In Situ TEM Reveals Fast Sodiation Kinetics with High Capacity, Chem. Mater., 2016, vol. 28, p. 1236.

    Article  CAS  Google Scholar 

  50. Li, W., Li, X., Yu, J., Liao, J., Zhao, B., Huang, L., Abdelhafiz, A., Zhang, H., Wang, J.-H., Guo, Z., and Liu, M., A self-healing layered GeP anode for high performance Li-ion batteries enabled by low formation energy, Nano Energy, 2019, vol. 61, p. 594.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (Agreement no. 21-13-00160).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. L. Kulova or A. M. Skundin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

A tribute to outstanding electrochemist Oleg Aleksandrovich Petrii (1937–2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulova, T.L., Skundin, A.M. & Gavrilin, I.M. Electrodes of Germanium and Germanium Phosphide Nanowires in Lithium-Ion and Sodium-Ion Batteries (A Review). Russ J Electrochem 58, 855–868 (2022). https://doi.org/10.1134/S1023193522100081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522100081

Keywords:

Navigation