Skip to main content
Log in

Electrooxidation of Dimethyl Ether on Pt/TiO2–C Сatalysts

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A series of Pt/TiO2–C catalysts containing platinum particles preferentially in the cubic form with the size of 6.7 nm uniformly distributed over the hybrid TiO2–C supports containing hydrated titania in the form of anatase are synthesized by the method of electrochemical oxidation and dispersion of metals. The thus obtained catalysts and also the commercial Pt/C catalyst E-TEK are used for studying the electrooxidation of dimethyl ether by the methods of CV, chronoamperometry, and RDE. The platinum-containing catalysts on hybrid TiO2–C supports exhibit the activity exceeding the activity of commercial catalysts by more than one order of magnitude. The prospects of using these catalysts for enhancing the efficiency of fuel cells with direct oxidation of dimethyl ether are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Fateev, V.N., Grigoriev, S.A., and Seregina, E.A., Hydrogen energy in Russia and the USSR, Nanotechnol. Russ., 2020, vol. 15, no. 3, p. 256. https://doi.org/10.1134/S1995078020030040

    Article  CAS  Google Scholar 

  2. Filippov, S., Golodnitsky, A., and Kashin, A. Fuel cells and hydrogen energy, Energ. Politika, 2020, no. 11, p.28.

  3. Capurso, T., Stefanizzi, M., Torresi, M., and Camporeale, S.M., Perspective of the role of hydrogen in the 21st century energy transition, Energy Convers. Manage., 2022, vol. 251, p. 114898. https://doi.org/10.1016/j.enconman.2021.114898

    Article  CAS  Google Scholar 

  4. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors, Wiley, 2015. https://doi.org/10.1595/205651315X689496

    Book  Google Scholar 

  5. Kartik, Jain and Karan, Jain, Hydrogen fuel cell: A review of different types of fuel cells with emphasis on PEM fuel cells and catalysts used in the PEM fuel cell, Int. J. All Res. Educ. Sci. Methods (IJARESM), 2021, vol. 9, no. 9, p. 1012.

    Google Scholar 

  6. Etesami, M., Mehdipour-Ataei, S., Somwangthanaroj, A., and Kheawhom, S., Recent progress of electrocatalysts for hydrogen proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 2021. https://doi.org/10.1016/j.ijhydene.2021.09.133

  7. Tsivadze, A.Yu., Tarasevich, M.R., Andreev, V.N., and Bogdanovskaya, V.A., Prospects for the creation of low-temperature fuel cells that do not contain platinum, Ross. Khim. Zh., 2006, vol. 50, no. 6, p. 109.

    CAS  Google Scholar 

  8. Serov, A., Artyushkova, K., Niangar, E., Wang, C., Dale, N., Jaouen, F., Sougrati, M.-T., Jia, Q., Mukerjee, S., and Atanassov, P., Nano-structured non-platinum catalysts for automotive fuel cell application, Nano Energy, 2015. https://doi.org/10.1016/j.nanoen.2015.07.002

  9. Elezovic, N.R., Radmilovic, V.R., and Krstajic, N.V., Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications, RSC Adv., 2016, vol. 6, p. 6788. https://doi.org/10.1002/chin.201612224

    Article  CAS  Google Scholar 

  10. Ghasemi, M., Choi, J., and Ju, H., Performance analysis of Pt/TiO2/C catalyst using a multi-scale and two-phase proton exchange membrane fuel cell mode, Electrochim. Acta, 2021, vol. 366, p. 137484. https://doi.org/10.1016/j.electacta.2020.137484

    Article  CAS  Google Scholar 

  11. Wu, X., et al., Excellent performance of Pt–C/TiO2 for methanol oxidation: Contribution of mesopores and partially coated carbon, Appl. Surf. Sci., 2017, vol. 426, p. 890. https://doi.org/10.1016/j.apsusc.2017.07.219

    Article  CAS  Google Scholar 

  12. Ong, B.C., Kamarudin, S.K., and Basri, S., Direct liquid fuel cells: A review, Int. J. Hydrogen Energy, 2017, vol. 42, p. 10142. https://doi.org/10.1016/j.ijhydene.2017.01.117

    Article  CAS  Google Scholar 

  13. Yaqoob, L., Noor, T., and Iqbal, N., Recent progress in development of efficient electrocatalyst for methanol oxidation reaction in direct methanol fuel cell, Int. J. Energy Res., 2021, vol. 45, no. 5, p. 6550. https://doi.org/10.1002/er.6316

    Article  CAS  Google Scholar 

  14. Seyam, S., Dincer, I., and Agelin-Chaab, M., Novel hybrid aircraft propulsion systems using hydrogen, methane, methanol, ethanol and dimethyl ether as alternative fuels, Energy Convers. Manage., 2021, vol. 238, p. 114. https://doi.org/10.1016/j.econman.2021.114172

    Article  Google Scholar 

  15. Yoo, J.-H., Choi, H.-G., Chunga, C.-H., and Choa, S.M., Fuel cells using dimethyl ether, J. Power Sources, 2006, vol. 163, p. 103.

    Article  CAS  Google Scholar 

  16. Ueda, S., Eguchi, M., Uno, K., Tsutsumi, Y., and Ogawa, N., Electrochemical characteristics of direct dimethyl ether fuel cells, Solid State Ionics, 2006, vol. 177, p. 2175. https://doi.org/10.1016/j.ssi.2006.04.047

    Article  CAS  Google Scholar 

  17. Kerangueven, G., Coutanceau, C., Sibert, E., Leger, J.-M., and Lamy, C., Methoxy methane (dimethyl ether) as an alternative fuel for direct fuel cells, J. Power Sources, 2006, vol. 157, p. 318. https://doi.org/10.1016/j.jpowsour.2005.07.080

    Article  CAS  Google Scholar 

  18. Zhang, Y., et al., Electrochemical and infrared study of electro-oxidation of dimethyl ether (DME) on platinum polycrystalline electrode in acid solutions, Electrochim. Acta, 2008, vol. 53, no. 21, p. 6093. https://doi.org/10.1016/j.electacta.2008.01.109

    Article  CAS  Google Scholar 

  19. Tong, Y., Lu, L., Zhang, Y., Gao, Y., Yin, G., Osawa, M., and Ye, S., Surface structure dependent electro-oxidation of dimethyl ether on platinum single-crystal electrodes, J. Phys. Chem., 2007, vol. 111, no. 51, p. 18836. https://doi.org/10.1021/JP7096907

    Article  CAS  Google Scholar 

  20. Votchenko, E.Y., Kubanova, M.S., Smirnova, N.V., and Petrii, O.A., Adsorption and electrooxidation of dimethyl ether on platinized platinum electrode in sulfuric acid solution, Russ. J. Electrochem., 2010, vol. 46, p. 212.

    Article  CAS  Google Scholar 

  21. Lu, L., et al., Electrochemical behaviors of dimethyl ether on platinum single crystal electrodes. Part I: Pt(1 1 1), J. Electroanal. Chem., 2008, vol. 619, no. 1, p. 143. https://doi.org/10.1016/j.jelechem.2008.04.013

    Article  CAS  Google Scholar 

  22. Lu, L., et al., Electrochemical behaviors of dimethyl ether on platinum single crystal electrodes. Part II: Pt(1 0 0), J. Electroanal. Chem., 2010, vol. 642, no. 1, p. 82. https://doi.org/10.1016/j.jelechem.2008.04.013

    Article  CAS  Google Scholar 

  23. Herron, J.A., Ferrin, P., and Mavrikakis, M., First-principles mechanistic analysis of dimethyl ether electro-oxidation on monometallic single-crystal surfaces, J. Phys. Chem., 2014, vol. 118, no. 42, p. 24199. https://doi.org/10.1021/JP505919X

    Article  CAS  Google Scholar 

  24. Grinberg, V.A., et al., Nanostructured catalysts for direct electrooxidation of dimethyl ether based on Bi- and trimetallic Pt–Ru and Pt–Ru–Pd alloys prepared from coordination compounds, Russ. J. Coord. Chem., 2017, vol. 43, no. 4, p. 206. https://doi.org/10.1134/S1070328417040017

    Article  CAS  Google Scholar 

  25. Tonnis, K., et al., Aqueous synthesis of highly dispersed Pt2Bi alloy nanoplatelets for dimethyl ether electro-oxidation, ACS Appl. Energy Mater., 2020, vol. 3, no. 8, p. 7588. https://doi.org/10.1021/acsaem.0c01028

    Article  CAS  Google Scholar 

  26. Liu, Y., et al., Electro-oxidation of dimethyl ether on Pt/C and PtMe/C catalysts in sulfuric acid, Electrochim. Acta, 2006, vol. 51, p. 6503. https://doi.org/10.1016/j.electacta.2006.04.037

    Article  CAS  Google Scholar 

  27. Li, Q., et al., High-activity PtRuPd/C catalyst for direct dimethyl ether fuel cells, Angew. Chem., 2015, vol. 54, no. 26, p. 7524. https://doi.org/10.1002/anie.201500454

    Article  CAS  Google Scholar 

  28. Rutkowska, I.A., et al., Enhancement of oxidation of dimethyl ether through application of zirconia matrix for immobilization of noble metal catalytic nanoparticles, J. Solid State Electrochem., 2020, vol. 24, no. 11, p. 3173. https://doi.org/10.1007/s10008-020-04790-0

    Article  CAS  Google Scholar 

  29. Kashyap, D., Teller, H., and Schechter, A., Dimethyl ether oxidation on an active SnO2/Pt/C catalyst for high-power fuel cells, ChemElectroChem, 2019, vol. 6, no. 9, p. 2407. https://doi.org/10.1002/CELC.201900216

    Article  CAS  Google Scholar 

  30. Rutkowska, I.A., Rytelewska, B., and Kulesza, P.J., Enhancement of oxidation of dimethyl ether through formation of hybrid electrocatalysts composed of Vulcan-supported PtSn decorated with Ru-black or PtRu nanoparticles, Electrochim. Acta, 2021, vol. 400, p. 139437. https://doi.org/10.1016/j.electacta.2021.139437

    Article  CAS  Google Scholar 

  31. Du, L., Lou, Sh., Chen, G., Zhang, G., Kong, F., Qian, Z., Du, Ch., Gao, Yu., Sun, Sh., and Yin, G., Direct dimethyl ether fuel cells with low platinum-group-metal loading at anode: Investigations of operating temperatures and anode Pt/Ru ratios, J. Power Sources, 2019, vol. 433, p. 126690. https://doi.org/10.1016/j.jpowsour.2019.05.096

    Article  CAS  Google Scholar 

  32. Leontyev, I., Kuriganova, A., Kudryavtsev, Y., Dkhil, B., and Smirnova, N., New life of a forgotten method: Electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells, Appl. Catal. A, 2012, vol. 431, no. 7, p. 120. https://doi.org/10.1016/j.apcata.2012.04.025

    Article  CAS  Google Scholar 

  33. Smirnova, N.V., Kuriganova, A.B., Novikova, K.S., and Gerasimova, E.V., The role of carbon support morphology in the formation of catalytic layer of solid polymer fuel cell, Russ. J. Electrochem., 2014, vol. 50, p. 899. https://doi.org/10.1134/S1023193514070143

    Article  CAS  Google Scholar 

  34. Kuriganova, A.B., Leontyeva, D.V., Ivanov, S., Bund, A., and Smirnova, N.V., Electrochemical dispersion technique for preparation of hybrid MOx–C supports and Pt/MOx–C electrocatalysts for low-temperature fuel cells, J. Appl. Electrochem., 2016, vol. 46, p. 1245. https://doi.org/10.1007/s10800-016-1006-5

    Article  CAS  Google Scholar 

  35. Kuriganova, A.B., Leontyev, I.N., Alexandrin, A.S., Maslova, O.A., Rakhmatulline, A.I., and Smirnova, N.V., Electrochemically synthesized Pt/TiO2–C catalysts for direct methanol fuel cell applications, Mendeleev Commun., 2017, vol. 27, p. 67. https://doi.org/10.1016/j.mencom.2017.01.021

    Article  CAS  Google Scholar 

  36. Kuriganova, A., Alexandrin, A., and Smirnova, N., Electrochemical dispersion method for TiO2 nanoparticles preparation, Key Eng. Mater., 2016, vol. 683, p. 419. https://doi.org/10.4028/www.scientific.net/KEM.683.419

  37. Sherstyuk, O.V., Pron’kin, S.N., Chuvilin, A.L., Salanov, A.N., Savinova, E.R., Tsirlina, G.A., and Petrii, O.A., Platinum electrodeposits on glassy carbon: the formation mechanism, morphology, and adsorption properties, Russ. J. Electrochem., 2000, vol. 36, p. 741.

    Article  CAS  Google Scholar 

  38. Cooper, K.R., Ramani, V., Fenton, J.M., and Runz, H.N., Experimental Methods and Data Analyses for Polymer Electrolyte Fuel Cells, Southern Pines: Scribner, 2005.

  39. Ulyankina, A., Avramenko, M., Kusnetsov, D., Firestein, K., Zhigunov, D., and Smirnova, N., Electrochemical synthesis of TiO2 under pulse alternating current: Effect of thermal treatment on the photocatalytic activity, Chem. Select., 2019, vol. 4, p. 2001. https://doi.org/10.1002/slct.201803367

    Article  CAS  Google Scholar 

  40. Kuriganova, A.B., Gerasimova, E.V., Leont’ev, I.N., Smirnova, N.V., and Dobrovol’skiy Yu.A., An electrochemical method for preparation of nanodispersed Pt/C catalyst and the prospects for its application in low-temperature fuel cells, Al’tern. Energ. Ekol., 2011, vol. 5. p. 58.

    Google Scholar 

  41. Antolini, E., Review: Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells, J. Mater. Sci., 2003, vol. 38, p. 2995. https://doi.org/10.1023/A:1024771618027

    Article  CAS  Google Scholar 

  42. Leontyev, I.N., Kuriganova, A.B., Leontyev, N.G., Hennet, L., Rakhmatullin, A., Smirnova, N.V., and Dmitriev, V., Size dependence of the lattice parameters of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations, RSC Adv., 2014, vol. 4, p. 35959. https://doi.org/10.1039/C4RA04809A

    Article  CAS  Google Scholar 

  43. Tobaldi, D.M., Pullar, R.C., Seabra, M.P., and Labrincha, J.A., Fully quantitative X-ray characterisation of Evonik Aeroxide TiO2 P25, Mater. Letters, 2014, vol. 122, p. 345. https://doi.org/10.1016/j.matlet.2014.02.055

    Article  CAS  Google Scholar 

  44. López-Cudero, A., Solla-Gullón, J., Herrero, E., Aldaz, A., and Feliu, J.M., CO electrooxidation on carbon supported platinum nanoparticles: Effect of aggregation, J. Electroanal. Chem., 2010, vol. 644, p. 117. https://doi.org/10.1016/j.jelechem.2009.06.016

    Article  CAS  Google Scholar 

  45. Liu, Y., et al., Electrochemical and ATR-FTIR study of dimethyl ether and methanol electro-oxidation on sputtered Pt electrode, Electrochim. Acta, 2007, vol. 52, p. 5781. https://doi.org/10.1016/j.electacta.2007.02.061

    Article  CAS  Google Scholar 

  46. Kerangueven, G., et al., Mechanism of di(methyl)ether (DME) electrooxidation at platinum electrodes in acid medium, J. Appl. Electrochem., 2006, vol. 36, p. 441. https://doi.org/10.1007/S10800-005-9095-6

    Article  CAS  Google Scholar 

  47. Shao, M., et al., In situ ATR-SEIRAS study of electrooxidation of dimethyl ether on a Pt electrode in acid solutions, Electrochem. Commun., 2005, vol. 7, p. 459. https://doi.org/10.1016/j.elecom.2005.02.024

    Article  CAS  Google Scholar 

  48. Housmans, T.H.M. and Koper, M.T.M., Methanol oxidation on stepped Pt[n(111)_(110)] electrodes: A chronoamperometric study, J. Phys. Chem., 2003, vol. 107, p. 8557. https://doi.org/10.1021/JP034291K

    Article  CAS  Google Scholar 

  49. Petrii, O.A., The progress in understanding the mechanisms of methanol and formic acid electrooxidation on platinum group metals (a review). Russ. J. Electrochem., 2019, vol. 55, no. 1. https://doi.org/10.1134/S1023193519010129

  50. Damaskin, B.B., Nekrasov, L.N., Petrii, O.A., Podlovchenko, B.I., Stenina, E.V., and Fedorovich, N.V., Elektrodnye prostessy v rastvorakh organicheskikh coedinenii (Electrode Processes in Solutions of Organic Compounds), Moscow: Moscow State University, 1985.

  51. Burshtein, R.Kh., Tyurin, V.S., and Pshenichnikov, A.G., Electrochemical oxidation of hydrocarbons on a platinum electrode, Dokl. Akad. Nauk SSSR, 1965, vol. 160, no. 3, p. 629.

    CAS  Google Scholar 

  52. Schröder, D. and Schwarz, H., FeO activates methane, Angew. Chem., 1990, vol. 29, no. 12, p. 1433.

    Article  Google Scholar 

  53. Dong, A., et al., Single PdO loaded on boron nanosheet for methane oxidation: A DFT study, Prog. Nat. Sci.: Mater. Int., 2019, vol. 29, no. 3, p. 367. https://doi.org/10.1016/j.pnsc.2019.05.005

    Article  CAS  Google Scholar 

  54. Zhao, Z.-J., et al., Theoretical Insights into the Selective Oxidation of Methane to Methanol in Copper-Exchanged Mordenite, ACS Catalysis, 2016, vol. 6, no. 6, p. 3760. https://doi.org/10.1021/acscatal.6B00440

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Scientific Foundation (grant 20-79-10063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kubanova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

A tribute to outstanding electrochemist Oleg Aleksandrovich Petrii (1937–2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubanova, M.S., Kuriganova, A.B. & Smirnova, N.V. Electrooxidation of Dimethyl Ether on Pt/TiO2–C Сatalysts. Russ J Electrochem 58, 916–926 (2022). https://doi.org/10.1134/S1023193522100068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522100068

Keywords:

Navigation