Skip to main content
Log in

Effect of the Porous Structure on the Electrochemical Characteristics of Supercapacitor with Nanocomposite Electrodes Based on Carbon Nanotubes and Resorcinol–Formaldehyde Xerogel

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of the porous structure on the electrochemical characteristics of supercapacitors with nanocomposite paper electrodes based on carbon nanotubes and resorcinol–formaldehyde xerogel is studied. The porous structure and hydrophilic–hydrophobic properties of electrodes based on the carbon paper were studied by the method of standard contact porosimetry in the range of pore radii from ~1 to 105 nm. The specific surface area ranged from 780 to 960 m2/g. The samples contained both hydrophilic and hydrophobic pores. Cyclic capacitance–voltage curves and impedance spectra in 1 M H2SO4 solution showed practically solely the charging of the electrical double layer without a noticeable effect of the pseudocapacitance from Faraday reactions. When the voltage sweep rate was changed by a factor of 100, the values of the equilibrium specific capacitance changed insignificantly (by a factor of 1.25 to 1.36), which indicates the optimality of the porous structure and the dominant contribution of the electrical double layer capacitance to the total capacitance of the supercapacitor. The dependences of the specific volumetric capacitance of the electrode on the logarithm of the voltage sweep rate have a falling linear character for all studied electrodes. A proportionality between the specific capacitance and the electrode specific surface area is demonstrated. This is due to the high porosity of the electrodes (~80 vol %) and the regularity of their porous structure. In addition, according to estimates, from 87 to 89% of the surface was hydrophilic, i.e., can be attributed to functioning pores; only 13 to 11%, to hydrophobic pores. A very high value of the supercapacitor specific power (45.8 kW/kg) was achieved. This shows that the nanocomposite paper is promising for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Conway, B., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Berlin: Springer, 2013.

    Google Scholar 

  2. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors, New York: Wiley, 2015.

    Google Scholar 

  3. Lidorenko, N.S., Anomalous electrical capacitance and experimental models of hyperconductivity, Doklady Acad. Nauk SSSR, 1974, vol. 216, p. 1261.

    Google Scholar 

  4. Volfkovich, Yu.M., Electrochemical Supercapacitors (a Review), Russ. J. Electrochem., 2021, vol. 57, p. 311.

    Article  CAS  Google Scholar 

  5. Miller, J.R., Engineering electrochemical capacitor applications, J. Power Sources, 2016, vol. 326, p. 726.

    Article  CAS  Google Scholar 

  6. Park, S.J. and Kim, B.J., Carbon materials for electrochemical capacitors, Carbon Sci., 2005, vol. 6, p. 257.

    Google Scholar 

  7. Largeot, C., Portet, C., Chmiola, J., Taberna, P.L., Gogotsi, Y., and Simon, P., Relation between the Ion Size and Pore Size for an Electric Double-Layer. Capacitor., J. Am. Chem. Soc., 2008, vol. 130, p. 2730.

    Article  CAS  Google Scholar 

  8. Gryglewicz, G., Machnikowski, J., Lorenc-Grabowska, E., Lota, G., and Frackowiak, E., Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochim. Acta, 2005, vol. 50, p. 1197.

    Article  CAS  Google Scholar 

  9. Wang, L., Fujita, M., and Inagaki, M., Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochim. Acta, 2005, vol. 50, p. 1197.

    Article  Google Scholar 

  10. Tarasevich, M.R., Electrochemistry of Carbonaceous Materials (in Russian), Moscow: Nauka, 1984.

  11. Tarkovskaya, I.A., Oxidized Carbon (in Russian), Kiew: Naukova dumka, 1981.

  12. Ermakova, A.S., Popova, A.V., Chayka, M.Yu., and Kravchenko, T.A., Redox Functionalization of Carbon Electrodes of Electrochemical Capacitors, Russ. J. Electrochem., 2017, vol. 53, p. 608.

  13. Solyanikova, A.S., Chayka, M.Yu., Parfenov, V.A., Kirik, S.D., and Kravchenko, T.A., Activation of Mesostructured Electrode Materials for Electrochemical Capacitors, Russ. J. Electrochem., 2015, vol. 51, p. 764.

    Article  Google Scholar 

  14. Inagaki, M., Konno, H., and Tanaike, O., Carbon materials for electrochemical capacitors, J. Power Sources, 2010, vol. 195, p. 7880.

    Article  CAS  Google Scholar 

  15. Nishihara, H., Itoi, H., Kogure, T., Hou, P., Touhara, H., Okino, F., and Kyotani, T., Chem., Investigation of the ion storage/transfer behavior in an electrical double layer capacitor by using ordered microporous carbons as model materials, Chemistry Eu. J., 2009, vol. 15, p. 5355.

    Article  CAS  Google Scholar 

  16. Rychagov, A.Yu., Volfkovich, Yu.M., Vorotyntsev, M.A., Kvacheva, L.D., Konev, D.V., Krestinin, A.V., Kryazhev, Yu.G., Kuznetsov, V.L, Kukushkina, Yu.A., Mukhinн, V.M., Sokolov, V.V., and Chervonobrodov, S.P., Promising electrode materials for supercapacitors (in Russian), Elektrokhim. Energetika, 2012, vol. 12, p. 167.

    CAS  Google Scholar 

  17. Yang, X., Fei, B., Ma, J., Liu, Liu, X., Yang, S., Tian, G., Jiang, Z., Yang, S., Tian, G., and Jiang, Z., Porous nanoplatelets wrapped carbon aerogel by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes, Carbohydrate Polymers, 2018, vol. 180, p. 385.

    Article  Google Scholar 

  18. Volfkovich, Yu.M., Rychagov, A.Yu., Sosenkin, V.E., and Krestinin, A.V., Power electrochemical supercapacitor based on carbon nanotubes (in Russian), Elektrokhim. Energetika, 2008, vol. 8, p. 106.

    CAS  Google Scholar 

  19. Yang, Z., Tian, J., Yin, Z., Cui, C., Qian, W., and Wei, F., Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review, Carbon, 2019, vol. 141, p. 467.

    Article  CAS  Google Scholar 

  20. Volfkovich, Yu.M., Rychagov, A.Yu., Sosenkin, V.E., Efimov, O.N., Os’makov, M.I., and Seliverstov, A.F., Measuring the Specific Surface Area of Carbon Nanomaterials by Different Methods, Russ. J. Electrochem, 2014, vol. 50, p. 1099.

    Article  CAS  Google Scholar 

  21. Dong, B., He, B.L., Xu, C.L., and Li, H.L., Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor, Mater. Sci. Engng. B., 2007, vol. 143, p. 7.

    Article  CAS  Google Scholar 

  22. Wang, J., Xu, Y., Chen, X., and Sun, X., Capacitance properties of single wall carbon nanotube/polypyrrole composite films, Composites Sci. Technol., 2007, vol. 67, p. 2981.

    Article  CAS  Google Scholar 

  23. Dong, B., He, B.L., Xu, C.L., and Li, H.L., Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor, Mater. Sci. and Engng. B, 2007, vol. 143, p. 7.

    Article  CAS  Google Scholar 

  24. Honda, Y., Takeshige, M., Shiozaki, H., Kitamura, T., Yoshikawa, K., Chakarabarti S., Suekane, O., Pan, L., Nakayama, Y., Yamagata, M., and Ishikawa, M., Vertically aligned double-walled carbon nanotube electrode prepared by transfer methodology for electric double layer capacitor, J. Power Sources, 2008, vol. 185, p. 1580.

    Article  CAS  Google Scholar 

  25. Chee, W.K., Lim, W.K., Zainal, H.N, Huang, Z., Harrison, N.M., and Andou, Y., Flexible Graphene-Based Supercapacitors: A Review, J. Phys. Chem. C, 2016, vol. 120, p. 4153.

    Article  Google Scholar 

  26. Eftekhari, A., Shulga, Y.M., Baskakov, S.A., and Gutsev, G.L., Graphene oxide membranes for electrochemical energy storage and conversion, Intern, J. Hydrogen Energy, 2018, vol. 43, p. 2307.

    Article  CAS  Google Scholar 

  27. Shulga, Yu.M., Baskakova, S.A., Baskakova, Yu.V., Lobach, A.S., Kabachkov, Volfkovich, Yu.M., Sosenkin, V.E., Shulga, N.Yu., Nefedkin, S.I., Kumar, Y., and Michtchenko, A., Preparation of graphene oxide-humic acid composite-based ink for printing thin film electrodes for micro-supercapacitors, J. Alloys Compounds, 2018, vol. 730, p. 88.

    Article  CAS  Google Scholar 

  28. Shulga, Yu.M., Baskakov, S.A., Baskakova, Y.V., Lobach, A.S., Volfkovich, Yu.M., Sosenkin, N.Y., Shulga, N.Yu., Parkhomenko, Y.N., Michtchenko, A., and Kumar, Y., Hybrid porous carbon materials derived from composite of humic acid, Microporous Mesoporous Mater., 2017, vol. 245, p. 24.

    Article  CAS  Google Scholar 

  29. Kryazhev, Yu.G., Volfkovich, Yu.M., Mel’nikov, V.P., Rychagov, A.Yu., Trenikhin, M.V., Solodovnichenko, V.S., and Likholobov, V.A., Synthesis and study of electrochemical properties of nanocomposites with graphene-like particles integrated into a high-porosity carbon matrix, Protection of Metals and Phys. Chem. Surfaces, 2017, vol. 53, p. 422.

    Article  CAS  Google Scholar 

  30. Shulga, Yu.M., Baskakov, S.A., Baskakova, Yu.V., Volfkovich, Yu.M., Shulga, N.Yu., Skryleva, E.A., Parkhomenko, Y.N., Belay, K.G., Gutsev, G.L., Rychagov, A.Y., Sosenkin, V.E., and Kovalev, I.D., Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes, J. Power Sources, 2015, vol. 279, p. 722.

    Article  CAS  Google Scholar 

  31. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., and Bagotsky, V.S., Supercapacitor carbon electrodes with high capacitance, J. Solid State Electrochem., 2014, vol. 18, p. 1351.

    Article  CAS  Google Scholar 

  32. Pekala, R.W., Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater. Sci., 1989, vol. 24, p. 3221.

    Article  CAS  Google Scholar 

  33. Ramos-Fernandez, G., Canal-Rodriuez, M., Arenillas, A., Menendez, J.A., Rodrigues-Pastor, I., and Martin-Gullon, I., Determinant influence of the electrical conductivity versus surface area on the performance of graphene oxide-doped carbon xerogel supercapacitors, Carbon, 2017. https://doi.org/10.1016/j.carbon.2017.10.025

  34. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, London: Springer Publisher, 2014.

    Book  Google Scholar 

  35. Volfkovich, Yu.M. and Sosenkin, V.E., Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics, Russian Chem. Rev., 2012, vol. 81, p. 936.

    Article  Google Scholar 

  36. Volfkovich, Yu.M., Sosenkin, V.E. Mayorova, N.A. Rychagov, A.Y., Baskakov, S.A., Kabachkov, E.N., Korepanov, V.I., Dremova, N.N. Baskakova, Y.V., and Shulga, Yu.M., PTFE/rGO Aerogels with Both Superhydrophobic and Superhydrophilic Properties for Electroreduction of Molecular Oxygen, ENERGY & FUELS, 2020, vol. 34, p. 7573.

    Article  CAS  Google Scholar 

  37. Rouquerol, J., Baron, G., Denoyel, R, Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., and Unger, K., Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report), Pure Appl. Chem., 2012, vol. 84, p. 107.

    Article  CAS  Google Scholar 

  38. https://ocsial.com.

  39. Krestinin, A.V., Dremova, N.N., Knerel’man, E.I., Blinova, L.N., Zhigalina, V.G., and Kiselev, N.A., Characterization of SWCNT Products Manufactured in Russia and the Prospects for Their Industrial Application, Nanotechnologies in Russia, 2015, vol. 10, p. 537.

    Article  CAS  Google Scholar 

  40. Chizmadzev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Macrokinetics of Processes in Porous Media (in Russian), Moscow: Nauka, 1971.

    Google Scholar 

  41. Gurevich, I.G., Volfkovich, Yu.M., and Bagotsky, V.S., Liquid Porous Electrodes (in Russian), Minsk: Nauka i Tekhnika, 1974.

    Google Scholar 

  42. Frumkin, A.N., Bagotsky, V.S., Iofa, Z.A., and Kaba-nov, B.N. Kinetics of Electrode Processes (in Russian), Moscow: Nauka, 1952.

    Google Scholar 

  43. Damaskin, B.B., Petrii, O.A., and Tsyrlina, G.A., Electrochemistry (in Russian), Moscow: Khimiya, 2001.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to А.V. Кrestinin for the granted samples of carbon paper of the CNT/resorcinol–formaldehyde xerogel nanocomposite.

Funding

The work is supported by the Ministry of Sciences and Higher Education of RF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Volfkovich.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

A tribute to outstanding electrochemist Oleg Aleksandrovich Petrii (1937–2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volfkovich, Y.M., Rychagov, A.Y. & Sosenkin, V.E. Effect of the Porous Structure on the Electrochemical Characteristics of Supercapacitor with Nanocomposite Electrodes Based on Carbon Nanotubes and Resorcinol–Formaldehyde Xerogel. Russ J Electrochem 58, 730–740 (2022). https://doi.org/10.1134/S1023193522090142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522090142

Keywords:

Navigation