Skip to main content
Log in

A Screen-Printed Electrochemical Sensor Based on Iron Molybdenum Oxide Magnetic Nanocomposite for Simultaneous Detection of Acetaminophen and Isoniazid

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, iron molybdenum oxide magnetic nanocomposite (Fe2MoO4) was prepared and characterized by different characterization techniques. An electrochemical sensing based on screen printed electrodes (SPE) modified with Fe2MoO4 (Fe2MoO4/SPE) facilitate the detection of acetaminophen (AC) in phosphate buffer solution (PBS) at pH 7.0 by using voltammetry technique. The Fe2MoO4/SPE shows enhanced electrocatalytic activity compared to unmodified SPE. As a result, the Fe2MoO4/SPE was used for further electrochemical studies. The AC concentration determination was in the range 0.15 to 500.0 µM and the limit of detection (LOD) was found to be 0.05 µM. From the scan rate study the oxidation and reduction of AC was found to be diffusion controlled and simultaneous detection of AC and isoniazid (INZ) were well done in differential pulse voltammetric (DPV) technique. Moreover the stability and reproducibility of Fe2MoO4/SPE was studied. Moreover, this sensor was further used to detect AC and INZ in AC tablet, INZ tablet and urine samples with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Siddiqui, M.R., AlOthman, Z.A., and Rahman, N., Analytical techniques in pharmaceutical analysis: a review, Arab. J. Chem., 2017, vol. 10, p. 1409.

    Article  CAS  Google Scholar 

  2. Mukherjee, P., Bagchi, A., and Raha, A., Simultaneous determination and method validation of ranitidine hydrochloride and itopride hydrochloride by UV-spectrophotometery, Afr. J. Pharm. Pharmacol., 2015, vol. 9, p. 834.

    Article  CAS  Google Scholar 

  3. Kaur, B., Kumar, R., Chand, S., Singh, K., and Malik, A.K., Determination of norfloxacin in urine and pharmaceutical samples using terbium doped zinc sulphide nanomaterials-sensitized fluorescence method, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2019, vol. 214, p. 261.

    Article  CAS  Google Scholar 

  4. Memon, N., Qureshi, T., Bhanger, M.I., and Malik, M.I., Recent trends in fast liquid chromatography for pharmaceutical analysis, Curr. Anal. Chem., 2019, vol. 15, p. 349.

    Article  CAS  Google Scholar 

  5. Lago, M.W., Friedrich, M.L., Iop, G.D., de Souza, T.B., de Azevedo Mello, P., and Adams, A.I.H., Capillary zone electrophoresis method to assay tipranavir capsules and identification of oxidation product and organic impurity by quadrupole-time of flight mass spectrometry, Talanta, 2018, vol. 181, p. 182.

    Article  CAS  PubMed  Google Scholar 

  6. Shaw, L. and Dennany, L., Applications of electrochemical sensors: forensic drug analysis, Curr. Opin. Electrochem., 2017, vol. 3, p. 23.

    Article  CAS  Google Scholar 

  7. Rahi, A., Karimian, K., and Heli, H., Nanostructured materials in electroanalysis of pharmaceuticals, Anal. Biochem., 2016, vol. 497, p. 39.

    Article  CAS  PubMed  Google Scholar 

  8. Karimi-Maleh, H., Karimi, F., Orooji, Y., Mansouri, G., Razmjou, A., Aygun, A., and Sen, F., A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin, Sci. Rep., 2020, vol. 10, p. 11699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karthik, R., Sasikumar, R., Chen, S.M., Kumar, J.V., Elangovan, A., Muthuraj, V., Muthukrishn, P., Al-Hemaid, F.M.A., Ali, M.A., and Elshikh, M.S., A highly sensitive and selective electrochemical determination of non-steroidal prostate anti-cancer drug nilutamide based on f-MWCNT in tablet and human blood serum sample, J. Colloid Interf. Sci., 2017, vol. 487, p. 289.

    Article  CAS  Google Scholar 

  10. Tajik, S. and Beitollahi, H., Won Jang, H., and Shokouhimehr, M., A screen printed electrode modified with Fe3O4@polypyrrole-Pt core–shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine, Talanta, 2021, vol. 232, p. 122379.

    Article  CAS  PubMed  Google Scholar 

  11. Kudchi, R.S., Shetti, N.P., Malode, S.J., and Todakar, A.B., Electroanalysis of an antihistamine drug at nano structured modified electrode, Mater. Today-Proc., 2019, vol. 18, p. 558.

    Article  CAS  Google Scholar 

  12. Saghiri, S., Ebrahimi, M., and Bozorgmehr, M.R., NiO nanoparticle/1-hexyl-3-methylimidazolium hexafluorophosphate composite for amplification of epinephrine electrochemical sensor, Asian J. Nanosci. Mater., 2021, vol. 4, p. 46.

    CAS  Google Scholar 

  13. Wu, Y., Wu, Y., Lv, X., Lei, W., Ding, Y., Chen, C., Lv, J., Feng, S., Chen, S.M., and Hao, Q., A sensitive sensing platform for acetaminophen based on palladium and multi-walled carbon nanotube composites and electrochemical detection mechanism, Mater. Chem. Phys., 2020, vol. 239, p. 121977.

    Article  CAS  Google Scholar 

  14. Yin, H., Ma, Q., Zhou, Y., Ai, S., and Zhu, L., Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene–chitosan composite film modified glassy carbon electrode, Electrochim. Acta, 2010, vol. 55, p. 7102.

    Article  CAS  Google Scholar 

  15. Lu, T.L. and Tsai, Y.C., Sensitive electrochemical determination of acetaminophen in pharmaceutical formulations at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified electrode, Sens. Actuators B: Chem., 2011, vol. 153, p. 439.

    Article  CAS  Google Scholar 

  16. Shahrokhian, S. and Asadian, E., Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode, Electrochim. Acta, 2010, vol. 55, p. 666.

    Article  CAS  Google Scholar 

  17. Byrd, R.B., Nelson, R., and Elliott, R.C., Isoniazid toxicity: a prospective study in secondary chemoprophylaxis, JAMA, J. Am. Med. Assoc., 1972, vol. 220, p. 1471.

    Article  CAS  Google Scholar 

  18. Kauffman, G.B., Isoniazid-destroyer of the white plague, J. Chem. Edu., 1978, vol. 55, p. 448.

    Article  CAS  Google Scholar 

  19. Mahmoud, B.G., Khairy, M., Rashwan, F.A., and Banks, C.E., Simultaneous voltammetric determination of acetaminophen and isoniazid (hepatotoxicity-related drugs) utilizing bismuth oxide nanorod modified screen-printed electrochemical sensing platforms, Anal. Chem., 2017, vol. 89, p. 2170.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y., Jiang, X., Zhang, J., Zhang, H., and Li, Y., Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode, Biosens. Bioelectron., 2019, vol. 130, p. 315.

    Article  CAS  PubMed  Google Scholar 

  21. Tahernejad-Javazmi, F., Shabani-Nooshabadi, M., and Karimi-Maleh, H., 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor, Compos. Part B-Eng., 2019, vol. 172, p. 666.

    Article  CAS  Google Scholar 

  22. Ershad, S. and Mofidi Rasi, R., Electrocatalytic oxidation of sulfite ion at the surface carbon ceramic modified electrode with prussian blue, Eurasian Chem. Commun., 2019, vol. 1, p. 43.

    CAS  Google Scholar 

  23. Karimi-Maleh, H. and Arotiba, O.A., Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid, J. Colloid Interface Sci., 2020, vol. 560, p. 208.

    Article  CAS  PubMed  Google Scholar 

  24. Tajik, S., Beitollahi, H., Garkani-Nejad, F., Sheikhshoaie, I., Sugih Nugraha, A., Won Jang, H., Yamauchi, Y., and Shokouhimehr, M., Performance of metal-organic frameworks in the electrochemical sensing of environmental pollutants, J. Mater. Chem. A, 2021, vol. 9, p. 8195.

    Article  CAS  Google Scholar 

  25. Tajik, S., Beitollahi, H., Garkani-Nejad, F., Safaei, M., and Mohammadzadeh-Jahani, P., Electrochemical sensing of Sudan I using the modified graphite screen-printed electrode, Int. J. Environ. Anal. Chem., 2020, vol. 102, no. 7. https://doi.org/10.1080/03067319.2020.1738418

  26. Payehghadr, M., Taherkhani, Y., Maleki, A., and Nourifard, F., Selective and sensitive voltammetric sensor for methocarbamol determination by molecularly imprinted polymer modified carbon paste electrode, Eurasian Chem. Commun., 2020, vol. 2, p. 982.

    CAS  Google Scholar 

  27. Hadi, M. and Mostaanzadeh, H., Sensitive detection of histamine at metal-organic framework (Ni-BTC) crystals and multi-walled carbon nanotubes modified glassy carbon electrode, Russ. J. Electrochem., 2018, vol. 54, p. 1045.

    Article  CAS  Google Scholar 

  28. Taei, M., Salavati, H., Fouladgar, M., and Abbaszadeha, E., Simultaneous determination of sunset yellow and tartrazine in soft drinks samples using nanocrystallites of spinel ferrite-modified electrode, Q. J. Iran. Chem. Commun., 2020, vol. 8, p. 67.

    CAS  Google Scholar 

  29. Montazarolmahdi, M., Masrournia, M., and Nezhadali, A., A new electrochemical approach for the determination of phenylhydrazine in water and wastewater samples using amplified carbon paste electrode, Chem. Methodol., 2020, vol. 4, p. 732.

    CAS  Google Scholar 

  30. Karimi-Maleh, H., Orooji, Y., Karimi, F., Alizadeh, M., Baghayeri, M., Rouhi, J., Tajik, S., Beitollahi, H., Agarwal, S., Gupta, V.K., Rajendran, S., Ayati, A., Fu, L., Sanati, A.L., Tanhaei, B., Sen, F., Shabani-Nooshabadi, M., Naderi Asrami, P., and Al-Othman, A., A critical review on the use of potentiometric based biosensors for biomarkers detection, Biosens. Bioelectron., 2021, vol. 184, p. 113252.

    Article  CAS  PubMed  Google Scholar 

  31. Jayadevimanoranjitham, J. and Narayanan, S.S., Fabrication of poly o-cresophthalein complexone film modified electrode and its application to simultaneous determination of purine bases in denatured DNA, Mater. Sci. Eng. C, 2020, vol. 108, p. 110353.

    Article  CAS  Google Scholar 

  32. Ganjali, M.R., Garkani-Nejad, F., Tajik, S., Beitollahi, H., Pourbasheer, E., and Larijanii, B., Determination of salicylic acid by differential pulse voltammetry using ZnO/Al2O3 nanocomposite modified graphite screen printed electrode, Int. J. Electrochem. Sci., 2017, vol. 12, p. 9972.

    Article  CAS  Google Scholar 

  33. Aragay, G., Pons, J., and Merkoci, A., Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection, Chem. Rev., 2011, vol. 111, p. 3433.

    Article  CAS  PubMed  Google Scholar 

  34. Tang, Y. and Cheng, W., Nanoparticle-modified electrode with size-and shape-dependent electrocatalytic activities, Langmuir, 2013, vol. 29, p. 3125.

    Article  CAS  PubMed  Google Scholar 

  35. Garkani-Nejad, F., Tajik, S., Beitollahi, H., and Sheikhshoaie, I., Magnetic nanomaterials based electrochemical (bio) sensors for food analysis, Talanta, 2021, vol. 228, p. 122075.

    Article  CAS  PubMed  Google Scholar 

  36. Kucukkolbasi, S., Erdogan, Z.O., Baslak, C., Sogut, D., and Kus, M., A highly sensitive ascorbic acid sensor based on graphene oxide/CdTe quantum dots-modified glassy carbon electrode, Russ. J. Electrochem., 2019, vol. 55, p. 107.

    Article  CAS  Google Scholar 

  37. Beitollahi, H., Tajik, S., Garkani-Nejad, F., and Safaei, M., Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors, J. Mater. Chem. B, 2020, vol. 8, p. 5826.

    Article  PubMed  Google Scholar 

  38. Abrishamkar, M., Ehsani Tilami, S., and Hosseini Kaldozakh, S., Electrocatalytic oxidation of cefixime at the surface of modified carbon paste electrode with synthesized nano zeolite, Adv. J. Chem. A, 2020, vol. 3, p. 767.

    CAS  Google Scholar 

  39. Garkani-Nejad, F., Beitollahi, H., and Alizadeh, R., Sensitive determination of hydroxylamine on ZnO nanorods/graphene oxide nanosheets modified graphite screen printed electrode, Anal. Bioanal. Electrochem., 2017, vol. 9, p. 134.

    Google Scholar 

  40. Prasad, P. and Sreedhar, N.Y., Effective SWCNTs/Nafion electrochemical sensor for detection of dicapthon pesticide in water and agricultural food samples, Chem. Methodol., 2018, vol. 2, p. 277.

    CAS  Google Scholar 

  41. Pei, L.Z., Wei, T., Lin, N., Zhang, H., and Fan, C.G., Bismuth tellurate nanospheres and electrochemical behaviors of L-Cysteine at the nanospheres modified electrode, Russ. J. Electrochem., 2018, vol. 54, p. 84.

    Article  CAS  Google Scholar 

  42. Garkani-Nejad, F., Beitollahi, H., Tajik, S., and Jahani, Sh., La3+-doped Co3O4 nanoflowers modified graphite screen printed electrode for electrochemical sensing of vitamin B6, Anal. Bioanal. Chem. Res., 2019, vol. 6, p. 69.

    Google Scholar 

  43. Sun, B., Ni, X., Cao, Y., and Cao, G., Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb, Biosens. Bioelectron., 2017, vol. 91, p. 354.

    Article  CAS  PubMed  Google Scholar 

  44. Hu, X. and Dong, S., Metal nanomaterials and carbon nanotubes—synthesis, functionalization and potential applications towards electrochemistry, J. Mater. Chem., 2008, vol. 18, p. 1279.

    Article  CAS  Google Scholar 

  45. Khodadadi, A., Faghih-Mirzaei, E., Karimi-Maleh, H., Abbaspourrad, A., Agarwal, S., and Gupta, V.K., A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations, Sens. Actuators B: Chem., 2019, vol. 284, p. 568.

    Article  CAS  Google Scholar 

  46. Abdi, R., Ghorbani-HasanSaraei, A., Naghizadeh Raeisi, S., and Karimi, F., A gallic acid food electrochemical sensor based on amplification of paste electrode by Cdo/CNTs nanocomposite and ionic liquid, J. Med. Chem. Sci., 2020, vol. 3, p. 338.

    CAS  Google Scholar 

  47. Arduini, F., Micheli, L., Moscone, D., Palleschi, G., Piermarini, S., Ricci, F., and Volpe, G., Electrochemical biosensors based on nanomodified screen-printed electrodes: recent applications in clinical analysis, TrAC Trend. Anal. Chem., 2016, vol. 79, pp. 114–126.

    CAS  Google Scholar 

  48. Naqvi, S.T.R., Rasheed, T., Ashiq, M.N., ul Haq, M.N., Majeed, S., Fatima, B., Nawaz, R., Hussain, D., and Shafi, S., Fabrication of iron modified screen printed carbon electrode for sensing of amino acids, Polyhedron, 2020, vol. 180, p. 114426.

    Article  CAS  Google Scholar 

  49. Tajyani, S. and Babaei, A., A new sensing platform based on magnetic Fe3O4@NiO core/shell nanoparticles modified carbon paste electrode for simultaneous voltammetric determination of quercetin and tryptophan, J. Electroanal. Chem., 2018, vol. 808, p. 50.

    Article  CAS  Google Scholar 

  50. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.

    Google Scholar 

  51. Si, W., Lei, W., Han, Z., Zhang, Y., Hao, Q., and Xia, M., Electrochemical sensing of acetaminophen based on poly (3,4-ethylenedioxythiophene)/graphene oxide composites, Sens. Actuators B: Chem., 2014, vol. 193, p. 823.

    Article  CAS  Google Scholar 

  52. Su, W.Y. and Cheng, S.H., Electrochemical oxidation and sensitive determination of acetaminophen in pharmaceuticals at poly (3,4-ethylenedioxythiophene)-modified screen-printed electrodes, Electroanalysis, 2010, vol. 22, p. 707.

    Article  CAS  Google Scholar 

  53. Singh, M., Sahu, A., Singh, P.K., Verma, F., Rai, A., and Rai, V.K., A novel ternary graphene-based nanocomposite modified electrode for acetaminophen detection, Electroanalysis, 2020, vol. 32, p. 1516.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iran Sheikhshoaie or Hadi Beitollahi.

Ethics declarations

The author confirms that this article content has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fariba Garkani Nejad, Sheikhshoaie, I. & Beitollahi, H. A Screen-Printed Electrochemical Sensor Based on Iron Molybdenum Oxide Magnetic Nanocomposite for Simultaneous Detection of Acetaminophen and Isoniazid. Russ J Electrochem 58, 823–834 (2022). https://doi.org/10.1134/S1023193522090129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522090129

Keywords:

Navigation