Skip to main content
Log in

Low Temperature Supercapacitor with Electrolyte Based on Hydrogen Fluoride and Ionic Liquid

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The behavior of a symmetric supercapacitor with electrodes of activated carbon cloth in the electrolyte based on a solution of ionic liquid (C8H15N2PF6) in anhydrous HF is studied by cyclic voltammetry and impedancemetry in the temperature interval from –65 to +25°С. The measurements are carried out in a hermetically sealed cell of perfluorinated polymer. It is shown that the capacitance of this capacitor substantially exceeds that of capacitors with conventional organic solvents. As the temperature decreases, the capacitance decreases insignificantly and the working voltage window widely extends. The increase in the internal resistance of the cell at low temperature is determined mainly by the contribution of the specific adsorption of solvated F-ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFRERENCES

  1. Kumar, Y., Rawal, S., Joshi, B., and Hashmi, S.A., Background, fundamental understanding and progress in electrochemical capacitors, J. Solid State Electrochem., 2019, vol. 23, p. 667.

    Article  CAS  Google Scholar 

  2. Xie, S., Liu, S., Cheng, P.F., and Lu, X., Recent advances toward achieving high-performance carbon-fiber materials for supercapacitors, ChemElectroChem, 2018, vol. 5, p. 571.

    Article  CAS  Google Scholar 

  3. Liu, C.-F., Liu, Y.-C., Yi, T.-Y., and Hu, C.-C., Carbon materials for high-voltage supercapacitors, Carbon, 2019, vol. 145, p. 529.

    Article  CAS  Google Scholar 

  4. Ciszewski, M., Koszorek, A., Radko, T., Szatkowski, P., and Janas, D., Review of the selected carbon-based materials for symmetric supercapacitor application, J. Electron. Mater., 2019, vol. 48, p. 717.

    Article  CAS  Google Scholar 

  5. McEwen, A.B., Ngo, H.L., LeCompte, K., and Goldman, J.L., Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications, J. Electrochem. Soc., 1999, vol. 146, p. 1687.

    Article  CAS  Google Scholar 

  6. Balducci, A., Bardi, U., Caporali, S., Mastragostino, M., and Soavi, F., Ionic liquids for hybrid supercapacitors, Electrochem. Commun., 2004, vol. 6, p. 566.

    Article  CAS  Google Scholar 

  7. Sato, T., Masuda, G., and Takagi, K., Electrochemical properties of novel ionic liquids for electric double layer capacitor applications, Electrochim. Acta, 2004, vol. 49, p. 3603.

    Article  CAS  Google Scholar 

  8. Tee, E., Tallo, I., Thomberg, T., Jänes, A., and Lust, E., Supercapacitors based on activated silicon carbide-derived carbon materials and ionic liquid, J. Electrochem. Soc., 2016, vol. 163, p. A1317.

    Article  CAS  Google Scholar 

  9. Salanne, M., Ionic liquids for supercapacitor applications, Top. Curr. Chem., 2017, vol. 375, article no. 63.

    Article  Google Scholar 

  10. Liu, W., Yan, X., Lang, J., and Xue, Q., Electrochemical behavior of graphene nanosheets in alkylimidazolium tetrafluoroborate ionic liquid electrolytes: influences of organic solvents and the alkyl chains, J. Mat. Chem., 2011, vol. 21, p. 13205.

    Article  CAS  Google Scholar 

  11. Frackowiak, E., Lota, G., and Pernak, J., Room-temperature phosphonium ionic liquids for supercapacitor application, Appl. Phys. Lett., 2005, vol. 86, article no. 164104.

    Article  Google Scholar 

  12. Chen, Y., Zhang, X., Zhang, D., Yu, P., and Ma, Y., High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes, Carbon, 2011, vol. 49, p. 573.

    Article  CAS  Google Scholar 

  13. Gryzlov, D.Yu., Kulova, T.L., Skundin, A.M., Andreev, V.N., Mel’nikov, V.P., and Kalinichenko, V.N., Double layer supercapasitor for a wide temperature interval, Elektrokhim. Energ., 2019, vol. 19, p. 141.

    Google Scholar 

  14. Rychagov, A.Yu. and Volfkovich, Yu.M., Low-reversible charging processes on highly dispersed carbon electrodes, Russ. J. Electrochem., 2009, vol. 45, p. 304.

    Article  CAS  Google Scholar 

  15. Kulova, T.L. and Skundin, A.M., Cyclic voltammetry of supercapacitors with the simplest equivalent circuit, Russ. Chem. Bull., 2020, vol. 69, p. 1672.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Skundin or F. A. Voroshilov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gryzlov, D.Y., Rychagov, A.Y., Kulova, T.L. et al. Low Temperature Supercapacitor with Electrolyte Based on Hydrogen Fluoride and Ionic Liquid. Russ J Electrochem 58, 807–811 (2022). https://doi.org/10.1134/S1023193522090075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522090075

Keywords:

Navigation