Skip to main content
Log in

The Einstein Fluctuation–Dissipation Relation as Applied to the Analysis of the Electrochemical Noise Resistance

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Within the framework of the Einstein fluctuation–dissipation relation, the theoretical analysis of the noise resistance is carried out for two classical electrochemical ac circuits: Ershler–Randles and Frumkin–Melik-Gaikazyan. It is shown that as the sampling period of the noise signal increases, the noise resistance in the Ershler–Randles circuit tends to its limiting value which coincides with the slow discharge resistance. The asymptotic behavior of the Frumkin–Melik-Gaikazyan circuit is of a different manner. As the sampling period of the noise signal increases, the curve of the noise resistance of the Frumkin–Melik-Gaikazyan circuit transforms into a straight line with the tangent inversely proportional to the thermodynamic capacitance of the electrode. The fluctuation–dissipation relation of Einstein may be used in the theoretical analysis of the noise resistance of other electrochemical ac circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bierwagen, G.P., Calculation of noise resistance from simultaneous electrochemical voltage and current noise data, J. Electrochem. Soc., 1994, vol. 141, p. L155.

    Article  CAS  Google Scholar 

  2. Chen, J.F. and Bogaerts, W.F., The physical meaning of noise resistance, Corros. Sci., 1995, vol. 37, p. 1839.

    Article  CAS  Google Scholar 

  3. Bertocci, U., Gabrielli, C., Huet, F., and Keddam, M., Noise resistance applied to corrosion measurements: I. Theoretical analysis, J. Electrochem. Soc., 1997, vol. 144, p. 31.

    Article  CAS  Google Scholar 

  4. Bautista, A., Bertocci, U., and Huet, F., Noise resistance applied to corrosion measurements: V. Influence of electrode asymmetry, J. Electrochem. Soc., 2001, vol. 148, p. B412.

    Article  CAS  Google Scholar 

  5. Cottis, R.A., Interpretation of electrochemical noise data, Corrosion, 2001, vol. 57, p. 265.

    Article  CAS  Google Scholar 

  6. Lowe, A.M., Eren, H., and Bailey, S.I., Electrochemical noise analysis: detection of electrode asymmetry, Corros. Sci., 2003, vol. 45, p. 941.

    Article  CAS  Google Scholar 

  7. Rivera, A.L. and Castaño, V.M., Corrosion analysis by electrochemical noise: A teaching approach, J. Mater. Educ., 2012, vol. 34, p. 5.

    Google Scholar 

  8. Jamali, S.S. and Mills, D.J., A critical review of electrochemical noise measurement as a tool for evaluation of organic coatings, Prog.Org. Coat., 2016, vol. 95, p. 26.

    Article  CAS  Google Scholar 

  9. Tang, Y., Dai, N., Wu, J., Jiang, Y., and Li, J., Effect of surface roughness on pitting corrosion of 2205 duplex stainless steel investigated by electrochemical noise measurements, Materials, 2019, vol. 12, p. 738.

    Article  CAS  Google Scholar 

  10. Obot, I.B., Onyeachu, I.B., Zeino, A., and Umoren, S.A., Electrochemical noise (EN) technique: review of recent practical applications to corrosion electrochemistry research, J. Adhes. Sci. Technol., 2019, vol. 33, p.1453.

    Article  CAS  Google Scholar 

  11. Xia, D.H., Song, S., Behnamian, Y., Hu, W., Cheng, Y.F., Luo, J.L., and Huet, F., Review-Electrochemical noise applied in corrosion science: theoretical and mathematical models towards quantitative analysis, J. Electrochem. Soc., 2020, vol. 167, p. 081507.

    Article  CAS  Google Scholar 

  12. Timashev, S.F., Generalization of fluctuation-dissipation relationships, Russ. J. Phys. Chem. A, 2005, vol. 79, no. 11, p. 1720.

    CAS  Google Scholar 

  13. Nyquist, H., Thermal agitation of electric charge in conductors, Phys. Rev., 1928, vol. 32, p. 110.

    Article  CAS  Google Scholar 

  14. Johnson, J.B., Thermal agitation of electricity in conductors, Phys. Rev., 1928, vol. 32, p. 97.

    Article  CAS  Google Scholar 

  15. Callen, H.B. and Welton, T.A., Irreversibility and generalized noise, Phys. Rev., 1951, vol. 83, p. 34.

    Article  Google Scholar 

  16. Johnson, P.J., Clark, C.D., and Artus, R.G., The determination of electrical conductivity by thermal noise measurements, J. Phys. D: Appl. Phys., 1986, vol. 19, p. 835.

    Article  CAS  Google Scholar 

  17. Gomila, G., Pennetta, C., Reggiani, L., Sampietro, M., Ferrari, G., and Bertuccio, G., Shot noise in linear macroscopic resistors, Phys. Rev. Lett., 2004, vol. 92, p. 226601.

    Article  CAS  Google Scholar 

  18. Einstein, A., On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat, Ann. Phys., 1905, vol. 17, p. 549.

    Article  CAS  Google Scholar 

  19. Einstein, A., Elementare theorie der brownschen bewegung, Z. Elektrochem. Angew. Phys. Chem. 1908 Apr 24, vol. 14(17), p. 235.

    Article  Google Scholar 

  20. Coffey, W. and Kalmykov, Y.P., The Langevin Equation: with Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, in World Scientific Series in Contemporary Chemical Physics, World Scientific, 2012, vol. 27.

  21. Ershler, B.V., Investigation of electrode reactions by the method of charging-curves and with the aid of alternating currents, Disc. Faraday Soc., 1947, vol. 1, p. 269.

    Article  Google Scholar 

  22. Randles, J.E.B., Kinetics of rapid electrode reactions, Disc. Farad. Soc., 1947, vol. 1, p. 11.

    Article  Google Scholar 

  23. Frumkin, A.N. and Melik-Gaikazyan, V.I., Determination of the adsorption kinetics of organic substances based on ac measurements of the capacitance and conductivity of the electrode/solution interface, Dokl. Akad. Nauk SSSR, 1951, vol. 77, p. 855.

    CAS  Google Scholar 

  24. Bouchaud, J.P. and Georges, A., Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep., 1990, vol. 195, p. 127.

    Article  Google Scholar 

  25. Barkai, E. and Fleurov, V.N., Generalized Einstein relation: A stochastic modeling approach, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 1998, vol. 58, p. 1296.

    CAS  Google Scholar 

  26. Gradenigo, G., Sarracino, A., Villamaina, D., and Vulpiani, A., Einstein relation in superdiffusive systems, J. Stat. Mech.: Theory Exp., 2012, p. L06001.

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Grafov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

A tribute to outstanding electrochemist Oleg Aleksandrovich Petrii (1937–2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grafov, B.M., Klyuev, A.L. & Davydov, A.D. The Einstein Fluctuation–Dissipation Relation as Applied to the Analysis of the Electrochemical Noise Resistance. Russ J Electrochem 58, 725–729 (2022). https://doi.org/10.1134/S1023193522090063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522090063

Keywords:

Navigation