Skip to main content
Log in

Cold-Rolled Binary Palladium Alloys with Copper and Ruthenium: Injection and Extraction of Atomic Hydrogen

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of annealing and chemical composition of cold-rolled palladium–copper (57 at % Cu) and palladium–ruthenium (6 at % Ru) alloys on the processes of injection and extraction of atomic hydrogen in an aqueous solution of 0.1 M H2SO4 was studied by two-stage cathode–anode chronoamperometry. The close values of the parameters of hydrogen permeability, found from the cathode and anode chronoamperograms, indicate a low level of imperfection of the alloy structure. It has been established that the choice of a mathematical model for processing the chronoamperometry results is determined by the thickness of the alloy samples. The finite-thickness model can be applied if the sample thickness does not exceed 10 µm. Preliminary annealing of samples leads to a decrease in hydrogen permeability and an increase in the effective rate constants of the injection and extraction of atomic hydrogen. At the same time, the palladium-ruthenium alloy is characterized by a higher rate of diffusion mass transfer, while the copper–palladium alloy is characterized by increased values of the kinetic parameters of atomic hydrogen transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. The palladium alloy samples were produced at the Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences.

REFERENCES

  1. Tarasevich, M.R., Rotenberg, Z.A., Zagudaeva, N.M., Erenburg, M.R., and Bogdanovskaya, V.A., Electrochemical impedance spectroscopy of the hydrogen ionization reaction in gas mixtures containing CO2 on Pt, Pd and PdRu catalysts in 0.5 M H2SO4 solution, Mezhdunarodnyiy nauchnyiy zhurnal Alternativnaya energetika i ekologiya, 2007, vol. 2, p. 118.

  2. Shigarov, A.B., Mescheryakov, V.D., and Kirillov, V.A., Application of Pd membranes in catalytic reactors of steam methane reforming for the production of pure hydrogen, Teoreticheskie osnovyi himicheskoy tehnologii, 2011, vol. 45, no. 5, p. 504.

  3. Fernandez, E., Helmi, A., Medrano, J.A., Coenen, K., Arratibel, A., Melendez, J., de Nooijer, N.C.A., Spallina, V., Viviente, J.L., Zuniga, J., van Sint Annaland, M., Pacheco Tanaka, D.A., and Gallucci, F., Palladium based membranes and membrane reactors for hydrogen production and purification: An overview of research activities at Tecnalia and TU/e, Int. J. Hydrog. Energy, 2017, vol. 42, p. 13763. https://doi.org/10.1016/j.ijhydene.2017.03.067

    Article  CAS  Google Scholar 

  4. Slovetskiy, D.I., Chistov, E.M., and Roshan, N.R., Pure hydrogen production, Mezhdunarodnyiy nauchnyiy zhurnal Alternativnaya energetika i ekologiya, 2004, vol. 1, p. 43.

  5. Rahimpour, M.R., Samimia, F., Tohidian, T., and Mohebi, S., Palladium membranes applications in reaction systems for hydrogen separation and purification: A review, Chem. Eng. Process., 2017, vol. 121, p. 24. https://doi.org/10.1016/j.cep.2017.07.021

    Article  CAS  Google Scholar 

  6. Sipatov, I.S., Sidorov, N.I., Pastuhov, E.A., and Vostryakov, A.A., Advanced technologies and materials for producing ultrapure hydrogen, Problemy nedropolzovaniya, 2015, vol. 3, p. 86.

  7. Feoktistova, A.M., Halilov, E.A., Mavrov, V.A., Chistov, E.M., and Alehina, M.B., Determination of the effect of heating in different media on the performance of membranes made of palladium-based alloy, Uspehi v himii i himicheskoy tehnologii, 2008, vol. 22, no. 10, p. 16.

  8. Burkhanov, G.S., Gorina, N.B., Kolchugina, N.B., Roshan, N.R., Slovetsky, D.I., and Chistov, E.M., Palladium-based alloy membranes for separation of high purity hydrogen from hydrogen-containing gas mixtures, Platinum Metals Rev., 2011, vol. 55, no. 1, p. 3.

    Article  CAS  Google Scholar 

  9. Avdyuhina, V.M., Burhanov, G.S., Nazmutdinov, A.Z., and Roshan, N.R., Hydrogen and vacancy induced structural and phase transformations in Pd–Ru alloy foils, Perspektivnyie materialy, 2011, vol. 11, p. 68.

  10. Morreale, B.D., Ciocco, M.V., Howard, B.H., Killmeyer, R.P., Cugini, A.V., and Enick, R.M., Effect of hydrogen-sulfide on the hydrogen permeance of palladium–copper alloys at elevated temperatures, J. Membr. Sci., 2004, vol. 241, p. 219. https://doi.org/10.1016/j.memsci.2004.04.033

    Article  CAS  Google Scholar 

  11. Sharma, R. and Sharma, Y., Hydrogen permeance studies in ordered ternary Cu–Pd alloys, J. Hydrog. Energy, 2015, vol. 40, p. 14885. https://doi.org/10.1016/j.ijhydene.2015.09.016

    Article  CAS  Google Scholar 

  12. Allemand, M., Martin, M.H., Reyter, D., Roué, L., Guay, D., Andrei, C., and Botton, G.A., Synthesis of Cu–Pd alloy thin films by co-electrodeposition, J. Electrochim. Acta, 2011, vol. 56, p. 7397. https://doi.org/10.1016/j.electacta.2011.05.052

    Article  CAS  Google Scholar 

  13. Zhang, K. and Way, J.D., Palladium-copper membranes for hydrogen separation, Sep. Purif., 2017, vol. 186, p. 39. https://doi.org/10.1016/j.seppur.2017.05.039

    Article  CAS  Google Scholar 

  14. Avdyuhina, V.M., Revkevich, G.P., and Katsnelson, A.A., The nature of structural transformations in hydrogen-containing palladium-based alloys, Poverhnost. Rentgenovskie, sinhrotronnyie i neytronnyie issledovaniya, 2006, vol. 12, p. 15.

  15. Abu El Hawa, H.W., Paglieri, S.N., Morris, C.C., Harale, A., and Douglas Way, J., Application of a Pd–Ru composite membrane to hydrogen production in a high temperature membrane reactor, Sep. Purif., 2015, vol. 147, p. 388. https://doi.org/10.1016/j.seppur.2015.02.005

    Article  CAS  Google Scholar 

  16. Decaux, C., Ngameni, R., Solas, D., Grigoriev, S., and Millet, P., Time and frequency domain analysis of hydrogen permeation across PdCu metallic membranes for hydrogen purification, J. Hydrog. Energy, 2010, vol. 35, no. 10, p. 4883. https://doi.org/10.1016/j.ijhydene.2009.08.100

    Article  CAS  Google Scholar 

  17. Volodin, A.A., Wan, Ch., Denys, R.V., Tsirlina, G.A., Tarasov, B.P., Fichtner, M., Ulmer, U., Yu, Y., Nwakwuo, C.C., and Yartys, V.A., Phase-structural transformations in a metal hydride battery anode La1.5Nd0.5MgNi9 alloy and its electrochemical performance, Int. J. Hydrog. Energy, 2016, vol. 41, no. 23, p. 9954. https://doi.org/10.1016/j.ijhydene.2016.01.089

    Article  CAS  Google Scholar 

  18. Wijayanti, I.D., Denys, R., Suwarno, Volodin, A.A., Lototsky, M.V., Guzik, M.N., Nei, J., Young, K., Roven, H.J., and Yartys, V., Hydrides of Laves type Ti–Zr alloys with enhanced H storage capacity as advanced metal hydride battery anodes, J. Alloys Compd., 2020, vol. 828, p. 154354. https://doi.org/10.1016/j.jallcom.2020.154354

    Article  CAS  Google Scholar 

  19. Morozova, N.B., Vvedensky, A.V., and Beredina, I.P., Phase-boundary exchange and unsteady diffusion of atomic hydrogen in Cu–Pd and Ag–Pd alloys. II. Experimental data, Prot. Met. Phys. Chem., 2015, vol. 51, no. 1, p. 72. https://doi.org/10.1134/S2070205115010098

  20. Morozova, N.B., Vvedenskii, A.V., Maksimenko, A.A., and Dontsov, A.I., Thin layer multicycle cathodic-anodic chronoamperometry of atomic hydrogen injection–extraction into metals with regard to the stage of phase boundary exchange, Russ. J. Electrochem., 2018, vol. 54, p. 344. https://doi.org/10.1134/S1023193518040067

    Article  CAS  Google Scholar 

  21. Morozova, N.B., Vvedenskii, A.V., and Beredina, I.P., Phase-boundary exchange and unsteady diffusion of atomic hydrogen in Cu–Pd and Ag–Pd alloys. I. Analysis of the model, Prot. Met. Phys. Chem., 2014, vol. 50, no. 6, p. 699. https://doi.org/10.1134/S2070205114060136

  22. State Diagrams of Binary Metal Systems: Directory: vol. 3, book 1, Lyakishev, N.P. Ed., Moscow: Mashinostroenie, 2001, p. 813.

  23. Morozova, N.B. and Vvedenskiy, A.V., Phase-boundary exchange and unsteady diffusion of atomic hydrogen in a metal film. I. Analysis of the current transient, Kondensirovannyie sredyi i mezhfaznyie granitsyi, 2015, vol. 17, no. 4, p. 451.

  24. Kobozev, N.I. and Monblanova, V.V., Study of the mechanism of hydrogen electrodiffusion through palladium, Zh. Fiz. Khim., 1935, vol. 6, no. 2–3, p. 308.

    CAS  Google Scholar 

  25. Gabrielli, C., Grand, P.P., Lasia, A., and Perrot, H., Investigation of Hydrogen Adsorption–Absorption into Thin Palladium Films: I. Theory, J. Electrochem. Soc., 2004, vol. 151, no. 11, p. 1925. https://doi.org/10.1149/1.1797033

    Article  CAS  Google Scholar 

  26. Morozova, N.B. and Vvedenskiy, A.V., Cathodic injection, anodic extraction and hydrogen diffusion in metallurgical Cu, Pd and Ag, Pd alloys. III. Accounting for irreversible sorption of hydrogen, Kondensirovannyie sredyi i mezhfaznyie granitsyi, 2016, vol. 18, no. 1, p. 81.

  27. Ievlev, V.M., Maksimenko, A.A., Belonogov, E.K., Kannyikin, S.V., Sladkopevtsev, B.V., Burhanov G.S., Roshan, N.R., and Chistov, E.M., Oriented crystallization of thick Pd–Ru films during magnetron sputtering of a target, Materialovedenie, 2015, no. 2, p. 37.

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-19-00232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Morozova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseeva, A.I., Morozova, N.B., Dontsov, A.I. et al. Cold-Rolled Binary Palladium Alloys with Copper and Ruthenium: Injection and Extraction of Atomic Hydrogen. Russ J Electrochem 58, 812–822 (2022). https://doi.org/10.1134/S1023193522090051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522090051

Keywords:

Navigation