Skip to main content
Log in

Electrocatalytic Reduction of Carbon Dioxide to Formic Acid on Sn- and Bi-Based Gas-Diffusion Electrodes in Aqueous Media (a Review)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon dioxide, as a greenhouse gas, is one of the most significant contributors to climate changes on the planet. The CO2 electrocatalytic reduction to value-added products is the key to the achieving of practical renewable energy conversion and storage, as well as green chemical production based on the CO2 and H2O. Sn- and Bi-based electrocatalysts are considered being the most promising for the electrolytic reduction of CO2 to formic acid, which has a wide range of applications, a pure hydrogen carrier, in particular. Due to the low solubility of carbon dioxide in aqueous solutions, the most promising high-rate and selective electrodes for its reduction are gas-diffusion electrodes, which make it possible to overcome restrictions on the mass transfer of the substrate (CO2) to a highly developed three-phase contact surface. In this review, we have systematized the most significant practical results obtained over the 2019–2021 period by various research groups in the electrocatalytic reduction of carbon dioxide to formic acid in aqueous electrolyte solutions at gas-diffusion electrodes based on Sn and Bi and their compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lim, R.J., Xie, M., Sk, M.A., Lee, J.M., Fisher, A., Wang, X., and Lim, K. H., A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts, Catal. Today, 2014, vol. 233, p. 169.

    Article  CAS  Google Scholar 

  2. Liu, H., Zhu, Y., Ma, J., Zhang, Z., and Hu, W., Recent Advances in Atomic—Level Engineering of Nanostructured Catalysts for Electrochemical CO2 Reduction, Advanced Functional Mater., 2020, vol. 30, p. 1910534.

    Article  CAS  Google Scholar 

  3. Du, D., Lan, R., Humphreys, J., and Tao, S., Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid, J. Appl. Electrochem., 2017, vol. 47, p. 661.

    Article  CAS  Google Scholar 

  4. Carbon Dioxide as Chemical Feedstosk, Aresta, M., Ed., Weinheim: Wiley–VCH, 2010.

    Google Scholar 

  5. Hori, Y., Electrochemical CO2 reduction on metal electrodes, In Modem Aspects of Electrochemistry, Ed. Vayenas, C.G., White, R.E., and Gamboa-Aldeco, M.E., vol. 42. N.Y.: Springer, 2008, p. 89–189.

    Google Scholar 

  6. Malkhandi, S. and Siang, Y., B., Electrochemical conversion of carbon dioxide to high value chemicals using gas diffusion electrodes, Curr. Opinion in Chem. Eng., 2019, vol. 26, p. 112.

    Article  Google Scholar 

  7. Anastas, P.T. and Warner, J.C., Green Chemistry: Theory and practice, London: Oxford University Press, 1998, 144 p.

    Google Scholar 

  8. Li, L., Huang, Y., and Li, Y., Carbonaceous materials for electrochemical CO2 reduction, Energy Chem., 2020, vol. 2, p. 100024.

    Article  Google Scholar 

  9. Weekes, D.M., Salvatore, D.A., Reyes, A., Huang A., and Berlinguette, C.P., Electrolytic CO2 reduction in a flow cell, Acc. Chem. Res., 2018, vol. 51, p. 910.

    Article  CAS  PubMed  Google Scholar 

  10. Burdyny, T. and Smith, W.A., CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially—relevant conditions, Energy Environ. Sci., 2019, vol. 12, p. 1442.

    Article  CAS  Google Scholar 

  11. Higgins, D., Hahn, C., Xiang, C., Jaramillo, T.F., and Weber, A.Z., Gas-diffusion electrodes for carbon dioxide reduction : a new paradigm, ACS Energy Lett., 2019, vol. 4, p. 317.

    Article  CAS  Google Scholar 

  12. Kornienko, V.L., Kolyagin, G.A., Kornienko, G.V., Parfenov, V.A., and Ponomarenko, I.V., Electrosynthesis of H2O2 from O2 in Gas Diffusion Electrodes Based on Mesostructured Carbon CMK-3, Russ. J. Electrochem., 2018, vol. 54, p. 192.

    Article  Google Scholar 

  13. Chatterjee, S., Dutta, I., Lum, Y., Lai, Z., and Huang, K.-W., Enanling storage and utilization of Low-carbon electricity: power to formic acid, Energy Environmental Sci., 2021, vol. 14, p. 1194.

    Article  CAS  Google Scholar 

  14. Irtem, E., Andreu, T., Parra, A., Hernander-Alonso, M.D., Garcia-Rodriguez, S., Riesco-Garcia, J.M., Penelas-Perez, G., and Morante, J.R., Low-energy formate production from CO2 electroreduction using electrodeposited tin on GDE, J. Mater. Chem. A., 2016, vol. 4, p. 13582.

    Article  CAS  Google Scholar 

  15. Del Castillo, A., Alvarez-Guerra, M., Solla-Gullon, J., Saez, A., Montiel, V., and Irabien, A., Sn nanoparticles on gas diffusion electrodes: synthesis, charactezation and use for continuous CO2 electroreduction to formate, J. Util. CO 2, 2017, vol. 18, p. 222.

  16. Kopljar, D., Wagner, N., and Klemm, E., Transferring electrochemical CO2 reduction from semi-batch into continuous operation mode using gas diffusion electrodes, Chem. Eng. Technol., 2016, vol. 39, p. 2042.

    Article  CAS  Google Scholar 

  17. Petrii, O.A., The progress in understanding the mechanisms of methanol and formic acid electrooxidation on platinum metals (a review), Russ. J. Electrochem., 2019, vol. 55, p. 1.

    Article  CAS  Google Scholar 

  18. Finn, C., Schnittger, S., Yellowlees, L.J., and Love, J.B., Molecular approaches to the electrochemical reduction of carbon dioxide, Chem. Commun., 2012, vol. 48, p. 1392.

    Article  CAS  Google Scholar 

  19. Agarw, A.S., Zhai, Y., Hill, D., and Sridhar, N., The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility, Chem. Sus. Chem., 2011, vol. 4, p. 1301.

    Article  CAS  Google Scholar 

  20. Subin, P., Wijaya, D.T., Jonggeol, D.T., Na, J., and Lee, C.W., Towards the Lange-Scale Electrochemical Reduction of Carbon Dioxide, Catalysts, 2021, vol. 11, p. 253.

    Article  CAS  Google Scholar 

  21. Tan, X., Yu, C., Ren, Y., Song, C., Li,W., and Qiu, J., Recent advances in innovative strategies the CO2 electroreduction reaction, Energy Environmental Sci., 2021, vol. 14, p. 765.

    Article  CAS  Google Scholar 

  22. Shaima, A. Al-Tamreh, Mohamed, H. Ibrahim, Muftah, H. El – Naas, Jan, Vaes, Deepak, Pant, Abdelbaki, Benamor, and Abdulkaren, Amhamed, Electroreduction of Carbon Dioxide into Formate: A Comprehensive Review, ChemElectroChem., 2021,vol. 8, p. 3207.

    CAS  Google Scholar 

  23. Gao, D., Wei, P., Li, H., Lim, L., Wang G., and Bao, X., Designing Electrolyzers for Electrocatalytic CO2 Reduction, Acta Phys.-Chim. Sin., 2021, vol. 37, p. 2009021.

    Google Scholar 

  24. Bienen, F., Lowe, A., Hildebrant, J., Hertle, S., Schonfogel, D., Kopljar, D., Wagner, N., Klemm, E., and Fridrich, K.A., Degration study on tin- and bismuth-based gas-diffusion electrodes during electrochemical CO2 reduction in highly alkaline media, J. Energy Chem., 2021, vol. 62, p. 367.

    Article  Google Scholar 

  25. Rabiee, H., Ge, L., Zhang, X., Hu, Shihu., Smart, S., Zhu, Z., Wang, H., and Yuan, Z., Stand – Alone asymmetric hollow fiber gas-diffusion electrodes with distinguished brobze phases for high-efficiency CO2 electrochemical reduction, Appl. Catal. B: Environmental, 2021, vol. 298, p. 120538.

    Article  CAS  Google Scholar 

  26. An, X., Li, S., Hao, X., Xie, Z., Du, X., Wang, Z., Hao, X., Abudula, A., and Guan, G., Common strategies for improving the perfomances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid formate, Renewable and Sustainable Energy Rev., 2021, vol. 143, p. 110952.

    Article  CAS  Google Scholar 

  27. Rablee, H., Ge, L., Zhang, X., Hu, S., Li, M., and Yuan, Z., Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value—added products: a review, Energy Enviro., Sci., 2021, vol. 14, p. 1959.

    Article  Google Scholar 

  28. Grigioni, Ivan, Laxmi, Kishore Sagar, Yuguang, C., Li, Geonhni, Lee, Yu, Yan, Koen, Bertens, Rui Kai, Miao, Xue, Wang, Jehad, Abed, Da Hye, Wong, F., Pelayo, Garcia de Arquer, Alexander, H., Ip David, Sinton, and Edvard, H. Sargent, CO2 Electroreduction to Formate at a Partial Current Density of 930 mA cm–2 with Inp Colloidal Quantum Dot Derived Catalysts, ACS Energy Lett., 2021, vol. 6, p. 79.

    Article  CAS  Google Scholar 

  29. Lowe, A., Schmidt, M., Bienen, F., Kopljar, D., Wagner, N., and Klemm, E., Optimizing reaction and gas diffusion electrodes applied in CO2 reduction reactiom to formate to reach current densities up to 1.8 A cm–2, ACS Sustainable Chem. Engineering, 2021, vol. 9, p. 4213.

    Article  CAS  Google Scholar 

  30. Byeong-Uk, Choi, Ying Chuan, Tan, Hakhyeon, Song, Kelvin, Berm Lee, and Jihun, Oh, System Design Considerations for Enhancing for Electroreduction of Formate from Simulated Flue Gas, ACS Sustainable Chem. Eng., 2021, vol. 9, p. 2348.

  31. Duarte, M., Daems, N., Hereijgers, J., Arenas-Esteban, D., Bals, S., and Breugelmans, T., Enhanced CO2 electroreduction with metal–nitrogen-doped carbons in a continuous flow reactor, J. CO 2 Utilization, 2021, vol. 50, p. 101583.

  32. Prangan, D., Dibyajyoti, VSK Ya., and Mihir Kumar, P., Progress in the electrochemical reduction of CO2 to formic acid: A review on current trends and future prospects, J. Envirenmental Chem. Engineering, 2021, vol. 9, p. 106394.

    Article  CAS  Google Scholar 

  33. Etienne, B. and Marc, R., Molecular Electrochemical Reduction of CO2 beyond two Electrons, Trends Chem., 2021, vol. 3, p. 359.

    Article  CAS  Google Scholar 

  34. Senocrate, A. and Battaglia, C., Electrochemical CO2 reduction at room temperature status and perspectives, J. Energy Storage, 2021, vol. 36, p. 102373.

    Article  Google Scholar 

  35. Guan, Y., Liu, M., Rao, X., Liu, Yu., and Zhang, J., Electrochemical reduction of carbon dioxide (CO2): bismuth-based electrocatalysts, J. Mater. Chem. A, 2021, vol. 9, p. 13770.

    Article  CAS  Google Scholar 

  36. Zhang, S., Chen, C., Yu, H., and Li, F., Materials and System design for direct electrochemical CO2 conversion in capture media, J. Mater. Chem. A, 2021, vol. 9, p. 18785.

    Article  CAS  Google Scholar 

  37. Cheng, F., Zhang, X., Mu, K., Jio, M., Wang, Z., Limpachanangkul, P., Chalermsinwan, B., Gao, Y., Li, Y., Chen, Z., and Lin, L., Recent Progress of Sn-Based Derivative catalysts for Electrochemical Reduction of CO2, Energy Technol., 2021, vol. 9, p. 2000799.

    Article  CAS  Google Scholar 

  38. Wang, Q., Cai, Chao, Dai, M., Fu, J., Zhang, X., Li, H., Zhang, H., Chen, K., Lin, Y., Li, H., Hu, J., Miyauchi, M., and Liu, M., Recent Advances in Strategies for improving the Perfomance of CO2 Reduction Reaction on Single Atom Catalysts, Small Science, 2021, vol. 1, p. 2000028.

    Article  Google Scholar 

  39. Thijs, B., Ronge, J., and Martens, J.A., Selective electrochemical reduction of CO2 to formic acid in a gas phase reactor with by-product recirculation, Sustainable Energy and Fuels, 2021, vol. 5, p. 1867.

    Article  CAS  Google Scholar 

  40. Osetrova, N.V., Zaharyan, A.V., Vasilev, Yu.B., and Bagotskij, V.S., Electrochemical reduction of carbon dioxide, In: Elektrosintes monomerov (Advanced Electrochemical of Organic Compounds) (in Russian), Moscow: Nauka, 1980, p. 220–243.

    Google Scholar 

  41. Kornienko, V.L., Kolyagin, G.A., and Saltykov, Yu.V., Electrosynthesis in Waterproofed Electrodes (in Russian), Novosibirsk: Sib. Branch, Russ. Akad. Nauk, 2011. (http://www.rfbr.ru/rffi/ru/books/o_1781580#1)

    Google Scholar 

  42. Qian, Y., Liu, Y., Tang, H., and Lin, B.-L., Highly efficient electroreduction of CO2 to formate by nanorod@2D nanosheets SnO, J. CO 2 Utilization, 2020, vol. 42, p. 101287.

  43. Sakaishi, K., Oaki, Y., Uchiyama, H., Hosono, E., Zhou, H., and Imai, H., Aqueus solution synthesis of SnO nanostructures with tuned optical absorption behavior and photoelectrochemical properties through morphological evolution, Nanoscale, 2020, vol. 2, p. 2424.

    Article  CAS  Google Scholar 

  44. Wang, Q., Wu, Y., Zhu, C., Xiong, R., Deng, Y., Wang, X., Wu, C., and Yu, H., Sn nanoparticles deposited onto a gas diffusion layer via impregnation-electroreduction for enhanced CO2 electroreduction to formate, Electrochim. Acta, 2021, vol. 369, p. 137662.

    Article  CAS  Google Scholar 

  45. Lim, J., Kang, P.W., Jeon, S.S., and Lee, H., Electrochemically deposited Sn catalysts with dense tips on a gas diffusion electrode for electrochemical CO2 reduction, J. Mater. Chem. A, 2020, vol. 8, p. 9032.

    Article  CAS  Google Scholar 

  46. Li, M., Idros, M.N., Wu, Y., Garg, S., Gao, S., Lin, R., Rabiee, H., Li, Z., Ge, L., Rufford, T.E., Zhu, Z., Lid, L., and Wang, G., Unveiling the effects of dimensionality of tin oxide-derived catalysts on CO2 reduction by using gas-diffusion electrodes, React. Chem. Eng., 2021, vol. 6, p. 345.

    Article  CAS  Google Scholar 

  47. Löwe, A., Rieg, C., Hierlemann, T., Salas, N., Kopljar, D., Wagner, N., and Klemm, E., Influence of Temperature on the Performance of Gas Diffusion Electrodes in the CO2 Reduction Reaction, ChemElectroChem, 2019, vol. 6, p. 4497.

    Article  CAS  Google Scholar 

  48. Chen, Y., Vise, A., Klein, W.E., Cetinbas, F.C., Kariuki, N.N., Myers, D.J., Smith, W.A., Deutsch, T.G., and Neyerlin, K.C., A robust, scalable platform for the electrochemical conversion of CO2 to formate; identifying pathways to higher energy efficiencies, ACS Energy Lett., 2020, vol. 5, p. 1825.

    Article  CAS  Google Scholar 

  49. Sen, S., Brown, S.M., Leonard, McL., and Brushett, F.R., Electroreduction of carbon dioxide to formate at high current densities using tin and tin oxide gas diffusion electrodes, J. Appl. Electrochem., 2019, vol. 49, p. 917.

    Article  CAS  Google Scholar 

  50. Wang, J., Zou, J., Hu, X., Ning, S., Wang, X., Kang, X., and Chen, S., Heterostructured intermetallic CuSn catalysts: high performance towards the electrochemical reduction of CO2 to formate, J. Mater. Chem. A, 2019, vol. 7, p. 27514.

    Article  CAS  Google Scholar 

  51. Bienen, F., Kopljar, D., Lowe, A, Aßmann, P., Stoll, M., Roßner, P., Wagner, N., Friedrich, A., and Klemm, E., Utilizing Formate as an Energy Carrier by Coupling CO2 Electrolysis with Fuel Cell Devices, Chem. Ing. Tech., 2019, vol. 91, p. 872.

    Article  CAS  Google Scholar 

  52. Xiang, H., Miller, H.A., Bellini, M., Christensen, H., Scott, K., Rasul, S., and Yu, E.H., Production of formate by CO2 electrochemical reduction and its application in energy storage, Sustainable Energy and Fuels, 2020, vol. 4, p. 277.

    Article  CAS  Google Scholar 

  53. Ma, W., Bu, J., Liu, Z., Yan, C., Yao, Y., Chang, N., Zhang, H., Wang, T., and Zhang, J., Monoclinic Scheelite Bismuth Vanadate Derived Bismuthene Nanosheets with Rapid Kinetics for Electrochemically Reducing Carbon Dioxide to Formate, Adv. Funct. Mater., 2021, vol. 31, p. 2006704.

    Article  CAS  Google Scholar 

  54. Fan, T., Ma, W., Xie, M., Liu, H., Zhang, Yang, S., Huang, P., Dong, Y., Chen, Z., and Yi, X., Achieving high current density for electrocatalytic reduction of CO2 to formate on bismuth-based catalysts, Cell Reports Phys. Sci., 2021, vol. 2, p. 100353.

    Article  CAS  Google Scholar 

  55. Yang, J., Wang, X., Qu, Y., Wang, X., Huo, H., Fan, Q., Wang, J., Yang, L.-M., and Wu, Y., Bi-dased metal-organic framework Derived Leafy Bismuth Nanosheets for Carbon Dioxide Electroreduction, Adv. Energy Mater., 2020, vol. 10, p. 2001709.

    Article  CAS  Google Scholar 

  56. Gong, Q., Ding, P., Xu, M., Zhu, X., Wang, M., Deng, J., Ma, Q., Han, N., Zhu, Y., Lu, J., Feng, Z., Li, Y., Zhou, W., and Li, Y., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction, Nature Commun., 2019, vol. 10, p. 2807.

    Article  CAS  Google Scholar 

  57. Wang, Q., Zhu, C., Wu, C., and Yu, H., Direct synthesis of bismuth nanosheets on a gas diffusion layer as a high-performance cathode for a coupled electrochemical system capable of electroreduction of CO2 to formate with simultaneous degradation of organic pollutants, Electrochim. Acta, 2019, vol. 319, p. 138.

    Article  CAS  Google Scholar 

  58. Xing, Z., Hu, X., and Feng, X., Tuning the Microenvironment in Gas-Diffusion Electrodes Enables High-Rate CO2 Electrolysis to Formate, ACS Energy Lett, 2021, vol. 6, p. 1694.

    Article  CAS  Google Scholar 

  59. Diaz-Sainz, G., Alvarez-Guerra, M., Solla-Gullon, J., Garcia-Cruz, L., Montiel, V., and Irabien, A., CO2 electroreduction to formate: Continuous single-pass operation in a filter-press reactor at high current densities using Bi gas diffusion electrodes, J. CO 2 Utilization, 2019, vol. 34, p. 12.

  60. Rabiee, H., Ge, L., Zhang, X., Hu, S., Li, M., Smart, S., Zhu, Z., and Yuan, Z., Shape-tuned electrodeposition of bismuth-based nanosheets on flow-through hollow fiber gas diffusion electrode for high-efficiency CO2 reduction to formate, Appl. Catal. B: Environmental, 2021, vol. 286, p. 119945.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. L. Kornienko or G. A. Kolyagin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

A tribute to outstanding electrochemist Oleg Aleksandrovich Petrii (1937–2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornienko, V.L., Kolyagin, G.A. & Taran, O.P. Electrocatalytic Reduction of Carbon Dioxide to Formic Acid on Sn- and Bi-Based Gas-Diffusion Electrodes in Aqueous Media (a Review). Russ J Electrochem 58, 647–657 (2022). https://doi.org/10.1134/S1023193522080079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522080079

Keywords:

Navigation