Skip to main content
Log in

Photoelectrochemical Characterization of Nano-Crednerite AgMnO2 Synthesized by Auto-Ignition: a Novel Photocatalyst for H2 Evolution

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

AgMnO2 nanocrystallites (31 nm) were prepared by sol-gel auto-ignition at 400°C in air. The crednerite characterized by X-ray diffraction (XRD) showed a single phase, crystallizing in a monoclinic unit cell (SG: C2/m). The refinement was made by isotypy with CuMnO2. The oxide is a narrow band-gap semiconductor with an indirect transition at 1.43 eV. The electrical conduction occurs predominantly by small polaron hopping between mixed valences Ag2+/+ in the (a, b) planes with an activation energy of 0.35 eV. The density of holes (NA = 2 × 1015 cm–3) and their mobility (μh = 0.8 × 10–4 m–2 V–1 s–1) indicate a conduction being thermally activated. The oxygen insertion in the layered crystal lattice induces p-type conductivity, a fact confirmed by the electrochemical measurements. The flat band potential (Efb = –0.04 V) indicates a cationic character of both valence and conduction bands deriving mostly from Ag+ 4d-orbital. The electrochemical impedance spectroscopy shows the predominance of the bulk contribution followed by diffusion of O2– species. The energetic band diagram of AgMnO2 established from the photoelectrochemical study, predicts a spontaneous hydrogen formation; a rate evolution of 39 µmol g–1 min–1 and a power conversion of 0.37% were obtained under visible light irradiation (27 mW cm–2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Calculated from the electrical conductivityσ (= eNAµh).

REFERENCES

  1. Kolotygin, V.A., Viskup, A.P., Pivak, E.V., and Kharton, V.V., The mixed electronic and ionic conductivity of perovskite-like Ba1 – xSrxFe1 –yTiyO3 – δ and BaTi0.5Fe0.5 – zCezO3 – δ solid solutions, Russ. J. Electrochem., 2020, vol. 56, p. 110.

    Article  CAS  Google Scholar 

  2. Lomonova, E.E., Agarkov, D.A., Borik, M.A., Eliseeva, G.M., Kulebyakin, A.V., Kuritsyna, I.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Chislova, A.S., and Tabachkova, N.Y., ZrO2–Sc2O3 solid electrolytes doped with Yb2O3 or Y2O3, Russ. J. Electrochem., 2020, vol. 56, p. 127.

    Article  Google Scholar 

  3. Galliano, S., Bella, F., Bonomo, M., Viscardi, G., Gerbaldi, C., Boschloo, G., and Barolo, C., Hydrogel electrolytes based on xanthan gum: green route towards stable dye-sensitized solar cells, J. Nanomater., 2020, vol. 10, p. 1585.

    Article  CAS  Google Scholar 

  4. Podsiadły-Paszkowska, A., Tranca, I., and Szyja, B.M., Tuning the hematite (110) surface properties to enhance Its efficiency in photoelectrochemistry, J. Phys. Chem. C, 2019, vol. 123, p. 5401.

    Article  Google Scholar 

  5. Mariotti, N., Bonomo, M., Fagiolari, L., Barbero, N., Gerbaldi, C., Bella, F., and Barolo, C., Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells, Green Chem., 2020, vol. 22, p. 7168.

    Article  CAS  Google Scholar 

  6. Pulli, E., Rozzi, E., and Bella, F., Transparent photovoltaic technologies: current trends towards upscaling, Energy Convers. Manag., 2020, vol. 219, p. 112982.

    Article  Google Scholar 

  7. Gouda, A., Liu, T., Byers, J.C., Augustynski, J., and Santato, C., Best practices in photoelectrochemistry, J. Power Sources, 2021, vol. 482, p. 228958.

    Article  CAS  Google Scholar 

  8. Baiano, C., Schiavo, E., Gerbaldi, C., Bella, F., Meligrana, G., Talarico, G., Maddalena, P., Pavone, M., and Muñoz-García, A.B., Role of surface defects in CO2 adsorption and activation on CuFeO2 delafossite oxide, J. Mol. Catal., 2020, vol. 496, p. 111181.

    Article  CAS  Google Scholar 

  9. Lyskov, N.V., Kotova, A.I., Istomin, S.Y., Mazo, G.N., and Antipov, E.V., Electrochemical properties of electrode materials based on Pr5Mo3O16+δ1, Russ. J. Electrochem., 2020, vol. 56, p. 93.

    Article  CAS  Google Scholar 

  10. Morozova, A.V., Istomin, S.Y., Strebkov, D.A., Lyskov, N.V., Abdullaeva, M.M., and Antipov, E.V., New electrode materials for symmetrical solid oxide fuel cells based on perovskites (La,Ca)(Fe,Co,Mg,Mo)O3 – δ1, Russ. J. Electrochem., 2020, vol. 56, p. 100.

    Article  Google Scholar 

  11. Benko, F.A. and Koffyberg, F.P., Opto-electronic properties of p- and n-type delafossite CuFeO2, J. Phys. Chem. Solids, 1987, vol. 48, p. 431.

    Article  CAS  Google Scholar 

  12. Ruttanapun, C., Kosalwat, W., Rudradawong, C., Jindajitawat, P., Buranasiri, P., Naenkieng, D., Boonyopakorn, N., Harnwunggmoung, A., Thowladda, W., Neeyakorn, W., Thanachayanont, C., Charoenphakdee, A., and Wichainchai, A., Reinvestigation thermoelectric properties of CuAlO2, Energy Procedia, 2014, vol. 56, p. 65.

    Article  CAS  Google Scholar 

  13. Satish, B. and Srinivasan, R., Soft chemistry synthesis and characterization of nano p-type transparent semiconducting delafossite oxides of type A+B3+O2 where A = Cu; B = Al, Ga, and Cr, Mater. Today Proc., 2018, vol. 5, p. 2401.

    Article  CAS  Google Scholar 

  14. Johna, M., Aßbichler, S.H., Park, S.H., Ullrich, A., Benka, G., Petersen, N., Rettenwander, D., and Horn, S.R., Low-temperature synthesis of CuFeO2 (delafossite) at 70°C: a new process solely by precipitation and ageing, J. Solid State Chem., 2016, vol. 233, p. 390.

    Article  Google Scholar 

  15. Kodintsev, I., Tolstoy, V., and Lobinsky, A., Room temperature synthesis of composite nanolayer consisting of AgMnO2 delafossitenanosheets and Ag nanoparticles by successive ionic layer deposition and their electrochemical properties, Mater. Lett., 2017, vol. 196, p. 54.

    Article  CAS  Google Scholar 

  16. Svintsitskiy, D.A., Kardash, T.Y., and Boronin, A.I., Surface dynamics of mixed silver-copper oxide AgCuO2 during X-ray photoelectron spectroscopy study, Appl. Surf. Sci., 2019, vol. 463, p. 300.

    Article  CAS  Google Scholar 

  17. Poienar, M., Banica, R., Sfirloaga, P., Ianasi, C., Mihali, C.V., and Vlazan, P., Microwave-assisted hydrothermal synthesis and catalytic activity study of crednerite-type CuMnO2 materials, Ceram. Int., 2018, vol. 44, p. 6157.

    Article  CAS  Google Scholar 

  18. Chen, H.Y., Lin, Y.C., and Lee, J.S., Crednerite-CuMnO2 thin films prepared using atmospheric pressure plasma annealing, Appl. Surf. Sci., 2015, vol. 338, p. 113.

    Article  CAS  Google Scholar 

  19. Kato, S., Takagi, N., Saito, K., and Ogasawara, M., Synthesis of delafossite-type Ag0.9MnO2 by the precipitation method at room temperature, ACS Omega, 2019, vol. 4, p. 9763.

    Article  CAS  Google Scholar 

  20. Lide, D.R., Baysinger, G., Berger, L.I., Kehiaian, H.V., Roth, D.L., Zwillinger, D., Goldberg, R.N., and Haynes, W.M., Handbook of Chemistry and Physics, 90th ed., Boca Raton, FL: CRC Press, 2010.

    Google Scholar 

  21. Trari, M., Topfer, J., Doumerc, J.P., Pouchard, M., Ammar, A., and Hagenmuller, P., Room temperature chemical oxidation of delafossite-type oxides, J. Solid State Chem., 1994, vol. 111, p. 104.

    Article  CAS  Google Scholar 

  22. Berthelot, R., Pollet, M., Doumerc, J.P., and Delmas, C., First experimental evidence of anew D4-AgCoO2 delafossite stacking, Inorg. Chem., 2011, vol. 50, p. 4529.

    Article  CAS  Google Scholar 

  23. Koriche, N., Bessekhouad, Y., Bouguelia, A., and Trari, M., Preparation and physical properties of CuxWO3, Phys. B, 2012, vol. 407, p. 1175.

    Article  CAS  Google Scholar 

  24. Koriche, N., Bouguelia, A., Aider, A., and Trari, M., Photocatalytic hydrogen evolution over delafossite CuAlO2, Int. J. Hydrogen Energy, 2005, vol. 30, p. 693.

    Article  CAS  Google Scholar 

  25. Töpfer, J., Trari, M., Gravereau, P., Chaminade, J.P., and Doumerc, J.P., Crystal growth and reinvestigation of the crystal structure of crednerite CuMnO2, Z. Kristallogr., 1994, vol. 210, p. 184.

    Google Scholar 

  26. Wang, L., Arif, M., Duan, G., Chen S., and Liu, X., A high performance quasi-solid-statesupercapacitor based on CuMnO2 nanoparticles, J. Power Sources, 2017, vol. 355, p. 53.

    Article  CAS  Google Scholar 

  27. Koriche, N., Bouguelia, A., Mohammedi, M., and Trari, M., Synthesis and physical properties of new oxide AgMnO2, J. Mater. Sci., 2007, vol. 42, p. 4778.

    Article  CAS  Google Scholar 

  28. Mahroua, O., Alili, B., Ammari, A., Bellal, B., Bradai, D., and Trari, M., On the physical and semiconducting properties of the crednerite AgMnO2 prepared by sol-gel auto-ignition, Ceram. Int., 2019, 45, p. 10511.

    Article  CAS  Google Scholar 

  29. Jiang, H.F., Gui, C.Y., Zhu, Y.Y., Wu, D.J., Sun, S.P., Xiong, C., and Zhu, X.B., First-principle study on O–A–O dumbbell of delafossite crystal, J. Alloys Compd., 2014, vol. 582, p. 64.

    Article  CAS  Google Scholar 

  30. Pankove, J.I., Optical Processes in Semiconductors, 1st ed., New York: Dover Publ., 1975.

    Google Scholar 

  31. Bosman, A.J. and Daal, H.J., Small-polaron versus band conduction in some transition-metal oxides, Adv. Phys., 1970, vol. 19, p. 1.

    Article  CAS  Google Scholar 

  32. Trari, M., Töpfer, J., Dordor, P., Grenier, J.C., Pouchard, M., and Doumerc, J.P., Preparation and physical properties of the solid solutions Cu1 + xMn1 − xO2 (0 ≤ x ≤ 0.2), J. Solid State Chem., 2005, vol. 178, p. 2751.

    Article  CAS  Google Scholar 

  33. Bellal, B., Saadi, S., Koriche, N., Bouguelia, A., and Trari, M., Physical properties of the delafossite LaCuO2, Phys. Chem. Solids, 2009, vol. 70, p. 1132.

    Article  CAS  Google Scholar 

  34. Koriche, N., Bouguelia, A., and Trari, M., Photocatalytic hydrogen production over new oxide LaCuO2.62, Int. J. Hydrogen Energy, 2006, vol. 31, p. 1196.

    Article  CAS  Google Scholar 

  35. Chen, H.Y. and Hsu, D.J., Characterization of crednerite-Cu1.1Mn0.9O2 films prepared using sol–gel processing, Appl. Surf. Sci., 2014, vol. 290, p. 161.

    Article  CAS  Google Scholar 

  36. Saadi, S., Bouguelia, A., and Trari, M., Photocatalytic hydrogen evolution over CuCrO2, Solar Energy, 2006, vol. 80, p. 272.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported financially by the Faculty of Chemistry (Algiers).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Koriche or R. Brahimi.

Ethics declarations

Authors announce that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koriche, N., Brahimi, R., Bellal, B. et al. Photoelectrochemical Characterization of Nano-Crednerite AgMnO2 Synthesized by Auto-Ignition: a Novel Photocatalyst for H2 Evolution. Russ J Electrochem 58, 634–642 (2022). https://doi.org/10.1134/S1023193522070072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522070072

Keywords:

Navigation