Skip to main content
Log in

Activity and Stability of a Platinum Nanostructured Catalyst Deposited onto a Nitrogen-Doped Carbonaceous Support

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A comparative analysis of the microstructure and electrochemical behavior of a platinum PCN catalyst synthesized over a nitrogen-doped carbon support and a commercial Pt/C-electrocatalyst HiSPEC3000 is carried out. The PCN catalyst is characterized by a smaller size of platinum nanoparticles and exhibits not only a higher activity in oxygen reduction reaction but also a higher corrosion-morphological resistance in acidic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Zhang, H., Hwang, S., Wang, M., Feng, Z., Karakalos, S., Luo, L., Qiao, Z., Xie, X., Wang, Ch., Su, D., Shao, Yu., and Wu, G., Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation, J. Am. Chem. Soc., 2017, vol. 40, no. 139, p. 14143. https://doi.org/10.1021/JACS.7B06514

    Article  Google Scholar 

  2. Zheng, X., Wu, J., Cao, X., Abbott, J., Jin, C., Wang, H., Strasser, P., Yang, R., Chen, X., and Wu, G., N-, P-, and S-doped Graphene-like Carbon Catalysts Derived from Onium Salts with Enhanced Oxygen Chemisorption for Zn-air Battery Cathodes, Appl. Catal. B: Environmental, 2018. https://doi.org/10.1016/J.APCATB.2018.09.054

  3. Moriau, L.J., Hrnjic, A., Pavlisic, A., Kamsek, A.R., Petek, U., Ruiz-Zepeda, F., Sala, M., Pavko, L., Selih, V.S., Bele, M., Jovanovic, P., Gatalo, M., and Hodnik, N., Resolving the nanoparticles structure-property relationships at the atomic level: a study of Pt-based electrocatalysts, iScience, 2021, vol. 24, no. 2, 102102. https://doi.org/10.1016/J.ISCI.2021.102102

  4. Maillard, F., Simonov, P.A., and Savinova, E.R., Carbon Materials as Supports for Fuel Cell Electrocatalysts, Carbon Mater. Catalysis, 2008, p. 429. https://doi.org/10.1002/9780470403709.CH12

    Book  Google Scholar 

  5. Bentele, D., Aylar, K., Olsen, K., Klemm, E., and Eberhardt, S.H., PEMFC Anode Durability: Innovative Characterization Methods and Further Insights on OER Based Reversal Tolerance, J. Electrochem. Soc., 2021, vol. 168, no. 2, p. 024515. https://doi.org/10.1149/1945-7111/ABE50B

    Article  CAS  Google Scholar 

  6. Stevens, D.A. and Dahn, J.R., Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells, Carbon, 2005, vol. 43, p. 179. https://doi.org/10.1016/J.CARBON.2004.09.004

    Article  CAS  Google Scholar 

  7. Reiser, C.A., Bregoli, L., Patterson, T.W., Yi, J.S., Yang, J.D., Perry, M.L., and Jarvi, T.D., A Reverse-Current Decay Mechanism for Fuel Cells, Electrochem. Solid-State Lett., 2005, vol. 8, p. A273. https://doi.org/10.1149/1.1896466

    Article  CAS  Google Scholar 

  8. Lee, G., Choi, H., and Tak, Y., In situ durability of various carbon supports against carbon corrosion during fuel starvation in a PEM fuel cell cathode, Nanotech., 2018, vol. 30, no. 8, p. 085402. https://doi.org/10.1088/1361-6528/aaf48c

    Article  Google Scholar 

  9. Du, Y., Shen, Y.B., Zhan, Y.L., Ning, F.D., Yan, L.M., and Zhou, X.C., Highly active iridium catalyst for hydrogen production from formic acid, Chinese Chem. Lett., 2017, vol. 28, p. 1746. https://doi.org/10.1016/J.CCLET.2017.05.018

    Article  CAS  Google Scholar 

  10. Castanheira, L., Silva, W.O., Lima, F.H.B., Crisci, A., Dubau, L., and Maillard, F., Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: Effect of the Carbon Structure, the Degradation Protocol, and the Gas Atmosphere, ACS Catal., 2015, vol. 5, p. 2184. https://doi.org/10.1021/CS501973

    Article  CAS  Google Scholar 

  11. Chen, J., Hu, J., and Waldecker, J.R., A Comprehensive Model for Carbon Corrosion during Fuel Cell Start-Up, J. Electrochem. Soc., 2015, vol. 162, no. 8, p. F878. https://doi.org/10.1149/2.0501508jes

    Article  CAS  Google Scholar 

  12. Jia, F., Guo, L., and Liu, H., Dynamic characteristics of internal current during startups/shutdowns in proton exchange membrane fuel cells, Int. J. Energy Res., 2019. https://doi.org/10.1002/ER.4537

  13. Tang, H., Qi, Z., Ramani, M., and Elter, J., PEM Fuel Cell Cathode Carbon Corrosion due to the Formation of Air/Fuel Boundary at the Anode, J. Power Sources, 2008, vol. 158, p. 1306. https://doi.org/10.1016/j.jpowsour.2005.10.059

    Article  CAS  Google Scholar 

  14. Meyer, Q., Pivac, I., Barbir, F., and Zhao, C., Detection of oxygen starvation during carbon corrosion in proton exchange membrane fuel cells using low-frequency electrochemical impedance spectroscopy, J. Power Sources, 2020, vol. 470, p. 228285. https://doi.org/10.1016/J.JPOWSOUR.2020.228285

    Article  CAS  Google Scholar 

  15. Messing, M. and Kjeang, E., Empirical modeling of cathode electrode durability in polymer electrolyte fuel cells, J. Power Sources, 2020, vol. 451, p. 227750. https://doi.org/10.1016/J.JPOWSOUR.2020.227750

    Article  CAS  Google Scholar 

  16. Alekseenko, A.A., Guterman, V.E., Belenov, S.V., Menshikov, V.S., Tabachkova, N.Y., Safronenko, O.I., and Moguchikh, E.A., Pt/C-electrocatalysts based on the nanoparticles with the gradient structure, Int. J. Hydrog. Energy, 2018, vol. 43, p. 3676. https://doi.org/10.1016/J.IJHYDENE.2017.12.143

    Article  CAS  Google Scholar 

  17. Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Lin, R., Tabachkova, N.Y., and Safronenko, O.I., Activity and Stability of Pt/C and Pt–Cu/C Electrocatalysts, Electrocatalysis, 2018, vol. 9, p. 550. https://doi.org/10.1007/s12678-017-0451-1

    Article  CAS  Google Scholar 

  18. Yano, H., Watanabe, M., Iiyama, A., and Uchida, H., Particle-size effect of Pt cathode catalysts on durability in fuel cells, Nano Energy, 2016, vol. 29, p. 323. https://doi.org/10.1016/J.NANOEN.2016.02.016

    Article  CAS  Google Scholar 

  19. Polymeros, G., Baldizzone, C., Geiger, S., Grote, J.P., Knossalla, J., Mezzavilla, S., Keeley, G.P., Cherevko, S., Zeradjanin, A.R., Schüth, F., and Mayrhofer, K.J.J., High temperature stability study of carbon supported high surface area catalysts—expanding the boundaries of exsitu diagnostics, Electrochim. Acta, 2016, vol. 211, p. 744. https://doi.org/10.1016/J.ELECTACTA.2016.06.105

    Article  CAS  Google Scholar 

  20. Wanga, S., Wanga, H., Huang, Ch., Ye, P., Luo, X., Ning, J., Zhong, Y., and Hu, Y., Trifunctional electrocatalyst of N-doped graphitic carbon nanosheets encapsulated with CoFe alloy nanocrystals: The key roles of bimetal components and high-content graphitic-N, Appl. Catal. B: Environmental, 2021, vol. 298, p. 120512. https://doi.org/10.1016/J.APCATB.2021.120512GET

    Article  Google Scholar 

  21. Cheng, J., Li, Yu., Huang, X., Wang, Q., Mei, A., and Kang, P., Shen Highly stable electrocatalysts supported on nitrogen-self-doped three-dimensional graphene like networks with hierarchical porous structures, J. Mater. Chem. A, 2015, vol. 3, p. 1492. https://doi.org/10.1039/C4TA05552G

    Article  CAS  Google Scholar 

  22. Wang, W., Jia, Q., Mukerjee, S., and Chen, S., Recent insights into the oxygen-reduction electrocatalysis of Fe/N/C materials, ACS Catal., 2019, vol. 9, p. 10126. https://doi.org/10.1021/ACSCATAL.9B02583

    Article  CAS  Google Scholar 

  23. Imran Jafri, R., Rajalakshmi, N., and Ramaprabhu, S., Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell, J. Mater. Chem., 2010, vol. 20, p. 7114. https://doi.org/10.1039/C0JM00467G

    Article  CAS  Google Scholar 

  24. Mardle, P., Ji, X., Wu, J., Guan, S., Dong, H., and Du, S., Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells, Appl. Catal. B: Environmental, 2020, vol. 260, p. 118031. https://doi.org/10.1016/J.APCATB.2019.118031

    Article  CAS  Google Scholar 

  25. Hu, Y., Jensen, J.O., Zhang, W., Cleemann, L.N., Xing, W., Bjerrum, N.J., and Li, Q., Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts, Angew. Chem. Int. Ed., 2014, vol. 53, p. 3675. https://doi.org/10.1002/ANIE.201400358

    Article  CAS  Google Scholar 

  26. Wang, H., Ye, W., Yang, Y., Zhong, Y., and Hu, Y., Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives, Nano Energy, 2021, vol. 85, p. 105942. https://doi.org/10.1016/J.NANOEN.2021.105942

    Article  CAS  Google Scholar 

  27. Golovin, V.A., Maltseva, N.V., Gribov, E.N., and Okunev, A.G., New nitrogen-containing carbon supports with improved corrosion resistance for proton exchange membrane fuel cells. International, Int. J. Hydrog. Energy, 2017, vol. 42, p. 11159. https://doi.org/10.1016/J.IJHYDENE.2017.02.117

    Article  CAS  Google Scholar 

  28. Langford, J.I. and Wilson, A.J.C., Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 1978, vol. 11, no. 102. https://doi.org/10.1107/S0021889878012844

  29. Van der Vliet, D., Strmcnik, D.S., Wang, C., Stamenkovic, V.R., Markovic, N.M., and Koper, M.T.M., On the importance of correcting for the uncompensated Ohmic resistance in model experiments of the Oxygen Reduction Reaction, J. Electroanal. Chem., 2010, vol. 647, p. 29. https://doi.org/10.1016/J.JELECHEM.2010.05.016

  30. Shinozaki, K., Zack, J.W., Pylypenko, S., Pivovar, B.S., and Kocha, S.S., Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: II. Influence of ink formulation, catalyst layer uniformity and thickness, J. Electrochem. Soc., 2015, vol. 162, p. F1384. https://doi.org/10.1149/2.0551512JES

    Article  CAS  Google Scholar 

  31. Pavlets, A., Alekseenko, A., Menshchikov, V., Belenov, S., Volochaev, V., Pankov, I., Safronenko, O., and Guterman, V., Influence of electrochemical pretreatment conditions of PtCu/C alloy electrocatalyst on its activity, Nanomat., 2021, vol. 6, p. 1499. https://doi.org/10.3390/NANO11061499

    Article  Google Scholar 

  32. Leontyev, I.N., Kuriganova, A.B., Leontyev, N.G., Hennet, L., Rakhmatullin, A., Smirnova, N.V., and Dmitriev, V., Size dependence of the lattice parameters of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations, RSC Adv., vol. 4, no. 68, p. 35959. https://doi.org/10.1039/C4RA04809A

  33. Riese, A., Banham, D., Ye, S., and Sun X., Accelerated stress testing by rotating disk electrode for carbon corrosion in fuel cell catalyst supports, J. Electrochem. Soc., 2015, vol. 162, p. F783. https://doi.org/10.1149/2.0911507JES

    Article  CAS  Google Scholar 

  34. Testing Wang, C., Ricketts, M., Soleymani, A.P., Jankovic, Ja., Waldecker, J., and Chen, J., Effect of Carbon Support Characteristics on Fuel Cell Durability in Accelerated Stress J. Electrochem. Soc., 2021, vol. 168, p. 044507. https://doi.org/10.1149/2.0911507JES

    Article  Google Scholar 

  35. Forouzandeh, F., Li, X., Banham, D.W., Feng, F., Ye, S., and Birss, V., Understanding the Corrosion Resistance of Meso- and Micro-Porous Carbons for Application in PEM Fuel Cells, J. Electrochem. Soc., 2018, vol. 165, p. F3230. https://doi.org/10.1149/2.0261806JES

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Valuable comments and recommendations from junior researchers А.Yu. Nikulin and N.V. Mal’tseva, Dr. N.Yu. Tabachkova, and Dr. V.А. Volochaeva are acknowledged.

Funding

The reported study was funded by the Russian Foundation of Basic Research according to the research project no. 20-33-90135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Moguchikh.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moguchikh, E.A., Paperzh, K.O., Alekseenko, A.A. et al. Activity and Stability of a Platinum Nanostructured Catalyst Deposited onto a Nitrogen-Doped Carbonaceous Support. Russ J Electrochem 58, 502–512 (2022). https://doi.org/10.1134/S1023193522060088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522060088

Keywords:

Navigation