Skip to main content
Log in

Nanoparticles Application in the Determination of Uric Acid, Ascorbic Acid, and Dopamine

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

This review describes the application of nanomaterials for the individual and simultaneous detection of dopamine (DA), uric acid (UA), and ascorbic acid (AA). Scientists have worked over the past years to modify electrode surfaces by using different nanomaterials to improve the selectivity, limits of detection, and sensitivity of sensors. In this review, the authors have briefly discussed the nanomaterials that were extensively applied in the construction and modification of working electrode surfaces for the detection of DA, UA, and AA. The electrochemical detection of DA, UA, and AA were categorized into three main sections including the detection in the presence of interferents, individual detection and the simultaneous detection of these molecules. For the individual detection of DA, UA, and AA the lowest detection limit was achieved by a Au/PDDA–rGO sensor in the detection of UA in urine samples. A detection limit of 0.0008 µM with a wide linear range of 0.25 to 150 µM was recorded. In the simultaneous detection of DA, UA, and AA in serum and urine samples, a Fe3O4–SnO2–Gr sensor gives the lowest detection limits (0.0071 µM for DA, 0.005 µM for UA, 0.0062 µM for AA) with good linear range (0.02 to 2.8 µM for DA, 0.015 to 2.40 µM for UA, 0.1 to 23 µM for AA). In the case of the simultaneous detection of DA and UA in serum and urine samples, the lowest detection limits were obtained by Au–Pt sensor. The detection limits (0.006 µM for DA, 0.038 µM for UA) with good linear range (0.1 to 400 µM for DA, 1 to 1000 µM for UA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. He, W., Ding, Y., Ji, L., Zhang, X., and Yang, F., A high-performance sensor based on bimetallic NiCu nanoparticles for the simultaneous determination of five species of biomolecules, Sens. Actuators B-Chem., 2017, vol. 241, p. 949.

    Article  CAS  Google Scholar 

  2. Arrigoni, O. and Tullio, M.C.D., Ascorbic acid: much more than just an antioxidant, Biochim. Biophys. Acta, 2002, vol. 1569, p. 1.

    Article  CAS  PubMed  Google Scholar 

  3. Yang, F.Q., Guan, J., and Li, S.P., Fast simultaneous determination of 14 nucleotides and nucleobases in cultured Cordyceps using ultra-performance liquid chromatography, Talanta, 2007, vol. 73, p. 269.

    Article  CAS  PubMed  Google Scholar 

  4. Damier, P., Hirsch, E.C., Agid, Y., and Graybiel, A.M., The substantia nigra of the human brain II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease, Brain, 1999, vol. 122, p. 1437.

    Article  PubMed  Google Scholar 

  5. Li, Y., Chen, S., Shao, X., Guo, J., Liu, X., and Liu, A., Association of uric acid with metabolic syndrome in men, premenopausal women and postmenopausal women, Int. J. Environ. Res. Public Health, 2014, vol. 11, p. 2899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, L., Gong, C., Shen, Y., Ye, W., Xu, M., and Song, Y., A novel ratiometric electrochemical biosensor for sensitive detection of ascorbic acid, Sens. Actuators B, 2017, vol. 242, p. 625.

    Article  CAS  Google Scholar 

  7. Kim, M.C., Kwak, J., and Lee, S.Y., Sensing of uric acid via cascade catalysis of uricase and a biomimetic catalyst, Sens. Actuators B-Chem., 2016, vol. 232, p. 744.

    Article  CAS  Google Scholar 

  8. Li, X.-L., Li, G., Jiang, Y.-Z., Kang, D., Jin, C.H., Shi, Q., Jin, T., Inoue, K., Todoroki, K., Toyo’oka, T., and Min, J.Z., Human nails metabolite analysis: a rapid and simple method for quantification of uric acid in human fingernail by high-performance liquid chromatography with UV-detection, J. Chromatogr. B, 2015, vol. 1002, p. 394.

    Article  CAS  Google Scholar 

  9. Sha, R. and Badhulika, S., Facile green synthesis of reduced graphene oxide/tin oxide composite for highly selective and ultra-sensitive detection of ascorbic acid, J. Electroanal. Chem., 2018, vol. 816, p. 30.

    Article  CAS  Google Scholar 

  10. Li, Y., Ran, G., Yi, W.J., Luo, H.Q., and Li, N.B., A glassy carbon electrode modified with graphene and poly(acridine red) for sensing uric acid, Microchim. Acta, 2012, vol. 178, p. 115.

    Article  CAS  Google Scholar 

  11. Bagheri, H., Pajooheshpour, N., Jamali, B., Amidi, S., Hajian, A., and Khoshsafar, H., A novel electrochemical platform for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4–SnO2–Gr ternary nanocomposite, Microchem. J., 2017, vol. 131, p. 120.

    Article  CAS  Google Scholar 

  12. Motshakeri, M., Travas-Sejdic, J., Phillips, A.R.J., and Kilmartin, P.A., Rapid electroanalysis of uric acid and ascorbic acid using a poly(3,4-ethylenedioxythiophene)-modified sensor with application to milk, Electrochim. Acta, 2018, vol. 265, p. 184.

    Article  CAS  Google Scholar 

  13. Kenarkob, M. and Pourghobadi, Z., Electrochemical sensor for acetaminophen based on a glassy carbon electrode modified with ZnO/Au nanoparticles on functionalized multiwalled carbon nanotubes, Microchem. J., 2019, vol. 146, p. 1019.

    Article  CAS  Google Scholar 

  14. Cinti, S., Colozza, N., Cacciotti, I., Moscone, D., Polomoshnov, M., Sowade, E., Baumann, R.R., and Arduini, F., Electroanalysis moves towards paper-based printed electronics: carbon black nanomodified inkjet-printed sensor for ascorbic acid detection as a case study, Sens. Actuators B-Chem., 2018, vol. 265, p. 155.

    Article  CAS  Google Scholar 

  15. Ganesh, P.S. and Kumara Swamy, B.E., Simultaneous electroanalysis of norepinephrine, ascorbic acid and uric acid using poly(glutamic acid) modified carbon paste electrode, J. Electroanal. Chem., 2015, vol. 752, p. 17.

    Article  CAS  Google Scholar 

  16. Zhao, D., Yu, G., Tian, K., and Xu, C., A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy, Biosens. Bioelectron., 2016, vol. 82, p. 119.

    Article  CAS  PubMed  Google Scholar 

  17. Tukimin, N., Abdullah, J., and Sulaiman, Y., Review-electrochemical detection of uric acid, dopamine and ascorbic acid, J. Electrochem. Soc., 2018, vol. 165, no. 7, p. B258.

    Article  CAS  Google Scholar 

  18. Zhang, X.D., Liu, X.J., Zhang, L., Li, D.L., and Liu, S.H., Novel porous Ag2S/ZnS composite nanospheres: fabrication and enhanced visible-light photocatalytic activities, J. Alloys Compd., 2016, vol. 655, p. 38.

    Article  CAS  Google Scholar 

  19. Mao, C.J., Chen, X.B., Niu, H.L., Song, J.M., Zhang, S.Y., and Cui, R.J., A novel enzymatic hydrogen peroxide biosensor based on Ag/C nano cables, Biosens. Bioelectron., 2012, vol. 31, p. 544.

    Article  CAS  PubMed  Google Scholar 

  20. Teymourian, H., Salimi, A., and Khezrian, S., Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioelectrochemical sensing platform, Biosens. Bioelectron., 2013, vol. 49, p. 1.

    Article  CAS  PubMed  Google Scholar 

  21. Yue, H.Y., Huang, S., Chang, J., Heo, C., Yao, F., Adhikari, S., Gunes, F., Liu, L.C., Lee, T.H., Oh, E.S., Li, B., Zhang, J., Huy, T.Q., Luan, N., Van, and Lee, Y.H., ZnO nanowire arrays on 3D hierarchical graphene foam: biomarker detection of Parkinson’s disease, ACS Nano, 2014, vol. 8, p. 1639.

    Article  CAS  PubMed  Google Scholar 

  22. Abellán-Llobregat, A., Jeerapan, I., Bandodkar, A., Vidal, L., Canals, A., Wang, J., and Morallón, E., A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration, Biosens. Bioelectron., 2017, vol. 91, p. 885.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Abellán-Llobregat, A., Vidal, L., Rodríguez-Amaro, R., Berenguer-Murcia, A., Canals, A., and Morallón, E., Au-IDA microelectrodes modified with Au-doped graphene oxide for the simultaneous determination of uric acid and ascorbic acid in urine samples, Electrochim. Acta, 2017, vol. 227, p. 275.

    Article  CAS  Google Scholar 

  24. Huang, Y., Miao, Y.E., Ji, S., Tjiu, W.W., and Liu, T., Electrospun carbon nanofibers decorated with Ag–Pt bimetallic nanoparticles for selective detection of dopamine, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 12449.

    Article  CAS  PubMed  Google Scholar 

  25. Sun, C.L., Chang, C.T., Lee, H.H., Zhou, J., Wang, J., Sham, T.K., and Pong, W.F., Microwave-assisted synthesis of a core–shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid, ACS Nano, 2011, vol. 5, p. 7788.

    Article  CAS  PubMed  Google Scholar 

  26. Sun, C.L., Lee, H.H., Yang, J.M., and Wu, C.C., The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites, Biosens. Bioelectron., 2011, vol. 26, p. 3450.

    Article  CAS  PubMed  Google Scholar 

  27. Cai, W., Lai, J., Lai, T., Xie, H., and Ye, J., Controlled functionalization of flexible graphene fibres for the simultaneous determination of ascorbic acid, dopamine and uric acid, Sens. Actuator B-Chem., 2016, vol. 224, p. 225.

    Article  CAS  Google Scholar 

  28. Deng, W., Yuan, X., Tan, Y., Ma, M., and Xie, Q., Three-dimensional graphene-like carbon frameworks as a new electrode material for electrochemical determination of small biomolecules, Biosens. Bioelectron., 2016, vol. 85, p. 618.

    Article  CAS  PubMed  Google Scholar 

  29. Jiang, J. and Du, X., Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites, Nanoscale, 2014, vol. 6, p. 11303.

    Article  CAS  PubMed  Google Scholar 

  30. Yang, Y.J. and Li, W., CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite, Biosens. Bioelectron., 2014, vol. 56, p. 300.

    Article  CAS  PubMed  Google Scholar 

  31. Kalimuthu, P. and John, S.A., Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode, Talanta, 2010, vol. 80, p. 1686.

    Article  CAS  PubMed  Google Scholar 

  32. Lin, K.-C., Tsai, T.-H., and Chen, S.-M., Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT–PEDOT film, Biosens. Bioelectron., 2010, vol. 26, p. 608.

    Article  CAS  PubMed  Google Scholar 

  33. Sajid, M., Nazal, M.K., Mansha, M., Alshara, A., Jillani, S.M.S., and Basheer, C., Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review, Trends Anal. Chem., 2016, vol. 76, p. 15.

    Article  CAS  Google Scholar 

  34. Abbas, M.W., Soomro, R.A., Kalwar, N.H., Zahoor, M., Avci, A., Pehlivan, E., Hallam, K.R., and Willander, M., Carbon quantum dot coated Fe3O4 hybrid composites for sensitive electrochemical detection of uric acid, Microchem. J., 2019, vol. 146, p. 517.

    Article  CAS  Google Scholar 

  35. Bai, Z., Zhou, C., Xu, H., Wang, G., Pang, H., and Ma, H., Polyoxometalates-doped Au nanoparticles and reduced graphene oxide: a new material for the detection of uric acid in urine, Sens. Actuators B-Chem., 2017, vol. 243, p. 361.

    Article  CAS  Google Scholar 

  36. Jain, S., Verma, S., Singh, S.P., and Sharma, S.N., An electrochemical biosensor based on novel butylamine capped CZTS nanoparticles immobilized by uricase for uric acid detection, Biosens. Bioelectron., 2019, vol. 127, p. 135.

    Article  CAS  PubMed  Google Scholar 

  37. El Ridi, R. and Tallima, H., Physiological functions and pathogenic potential of uric acid: a review, J. Adv. Res., 2017, vol. 8, no. 5, p. 487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grassi, D., Ferri, L., Desideri, G., Giosia, P.D., Cheli, P., Pinto, R.D., Properzi, G., and Ferri, C., Chronic hyperuricemia, uric acid deposit and cardiovascular risk, Curr. Pharm. Des., 2013, vol. 19, no. 13, p. 2432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sekli-Belaidi, F., Temple-Boyer, P., and Gros, P., Voltammetric microsensor using PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric acids, J. Electroanal. Chem., 2010, vol. 647, p. 159.

    Article  CAS  Google Scholar 

  40. Harraz, F.A., Faisal, M., Ismail, A.A., Al-Sayari, S.A., Al-Salami, A.E., Al-Hajry, A., and Al-Assiri, M.S., TiO2/reduced graphene oxide nanocomposite as efficient ascorbic acid amperometric sensor, J. Electroanal. Chem., 2019, vol. 832, p. 225.

    Article  CAS  Google Scholar 

  41. Huang, D., Li, X., Chen, M., Chen, F., Wan, Z., Rui, R., Wang, R., Fan, S., and Wu, H., An electrochemical sensor based on a porphyrin dye-functionalized multiwalled carbon nanotubes hybrid for the sensitive determination of ascorbic acid, J. Electroanal. Chem., 2019, vol. 841, p. 101.

    Article  CAS  Google Scholar 

  42. Zhang, X., Yu, S., He, W., Uyama, H., Xie, Q., Zhang, L., and Yang, F., Electrochemical sensor based on carbon-supported NiCoO2 nanoparticles for selective detection of ascorbic acid, Biosens. Bioelectron., 2014, vol. 55, p. 446.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, W.X., Zheng, J.Z., Shi, J.G., Lin, Z.Q., Huang, Q.T., Zhang, H.Q., Wei, C., Chen, J.H., Hu, S.R., and Hao, A.Y., Nafion covered core-shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine, Anal. Chim. Acta, 2015, vol. 853, p. 285.

    Article  CAS  PubMed  Google Scholar 

  44. Vilian, A.T.E., An, S., Choe, S.R., Kwak, C.H., Huh, Y.S., Lee, J., and Han, Y.-K., Fabrication of 3D honeycomb-like porous polyurethane-functionalized reduced graphene oxide for detection of dopamine, Biosens. Bioelectron., 2016, vol. 86, p. 122.

    Article  CAS  PubMed  Google Scholar 

  45. Lu, Y., Dong, L., Jianshe, H., and Tianyan, Y., Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode, Sens. Actuators B-Chem., 2014, vol. 193, p. 166.

    Article  CAS  Google Scholar 

  46. Fu, Y.Y., Sheng, Q.L., and Zheng, J.B., The novel sulfonated polyaniline-decorated carbon nanosphere nanocomposites for electrochemical sensing of dopamine, New J. Chem., 2017, vol. 41, p. 15439.

    Article  CAS  Google Scholar 

  47. Abdul, R.P. and Jae-Seung, L., Recent advances in optical detection of dopamine using nanomaterials, Microchim. Acta, 2017, vol. 184, p. 1239.

    Article  CAS  Google Scholar 

  48. Van der Horst, C., Silwana, B., Iwuoha, E., and Somerset, V., Spectroscopic and voltammetric analysis of platinum group metals in road dust and roadside soil, Environments, 2018, vol. 5, p. 120.

    Article  Google Scholar 

  49. Silwana, B., Van der Horst, C., Iwuoha, E., and Somerset, V., A brief review on recent developments of electrochemical sensors in environmental application for PGMs, J. Environ. Sci. Health Part A, 2016, vol. 51, p. 1233.

    Article  CAS  Google Scholar 

  50. Zeng, Y., Zhu, Z., Du, D., and Lin, Y., Nanomaterial-based electrochemical biosensors for food safety, J. Electroanal. Chem., 2016, vol. 781, p. 147.

    Article  CAS  Google Scholar 

  51. Laffont, L., Hezard, T., Gros, P., Heimbürger, L.E., Sonke, J.E., Behra, P., and Evrard, D., Mercury(II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry-including a chloride desorption step, Talanta, 2015, vol. 141, p. 26.

    Article  CAS  PubMed  Google Scholar 

  52. Van der Horst, C., Silwana, B., Iwuoha, E., and Somerset, V., Application of a bismuth-silver nanosensor for the simultaneous determination of Pt–Rh and Pd–Rh complexes, J. Nano Res., 2016, vol. 44, p. 126.

    Article  CAS  Google Scholar 

  53. Silwana, B., Van der Horst, C., Iwuoha, E., and Somerset, V., Synthesis, characterisation and electrochemical evaluation of reduced graphene oxide modified antimony nanoparticles, Thin Solid Films, 2015, vol. 592, p. 124.

    Article  CAS  Google Scholar 

  54. Al-Hossainy, A.F., Abd-Elmageed, A.A.I., and Ibrahim, A.T.A., Synthesis, structural and optical properties of gold nanoparticle-graphene-selenocysteine composite bismuth ultrathin film electrode and its application to Pb(II) and Cd(II) determination, Arab. J. Chem., 2019, vol. 12, no. 8, p. 2853.

    Article  CAS  Google Scholar 

  55. Wong, A., Razzino, C.A., Silva, T.A., and Fatibello-Filho, O., Square-wave voltammetric determination of clindamycin using a glassy carbon electrode modified with graphene oxide and gold nanoparticles within a cross-linked chitosan film, Sens. Actuators B-Chem., 2016, vol. 231, p. 183.

    Article  CAS  Google Scholar 

  56. Zhou, Y., Tang, L., Zeng, G., Zhang, C., Xie, X., Liu, Y., Wang, J., Tang, J., Zhang, Y., and Deng, Y., Label-free detection of lead using impedimetric sensor based on ordered mesoporous carbon-gold nanoparticles and DNA enzyme catalytic beacons, Talanta, 2016, vol. 146, p. 641.

    Article  CAS  PubMed  Google Scholar 

  57. Hezard, T., Fajerwerg, K., Evrard, D., Collière, V., Behra, P., and Gros, P., Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: application to Hg(II) trace analysis, J. Electroanal. Chem., 2012, vol. 664, p. 46.

    Article  CAS  Google Scholar 

  58. Zhu, L., Xu, L., Huang, B., Jia, N., Tan, L., and Yao, S., Simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping voltammetry at a gold nanoparticle–graphene–cysteine composite modified bismuth film electrode, Electrochim. Acta, 2014, vol. 115, p. 471.

    Article  CAS  Google Scholar 

  59. Kamyabi, M.A. and Aghaei, A., Electromembrane extraction coupled to square wave anodic stripping voltammetry for selective preconcentration and determination of trace levels of As(III) in water samples, Electrochim. Acta, 2016, vol. 206, p. 192.

    Article  CAS  Google Scholar 

  60. Gan, X., Zhao, H., Quan, X., and Zhang, Y., An electrochemical sensor based on p-aminothiophenol/Au nanoparticle-decorated HxTiS2 nanosheets for specific detection of picomolar Cu(II), Electrochim. Acta, 2016, vol. 190, p. 480.

    Article  CAS  Google Scholar 

  61. Idris, A.O., Mabuba, N., and Arotiba, O.A., Electroanalysis of selenium in water on an electrodeposited gold-nanoparticle modified glassy carbon electrode, J. Electroanal. Chem., 2015, vol. 758, p. 7.

    Article  CAS  Google Scholar 

  62. Wan, H., Sun, Q., Li, H., Sun, F., Hu, N., and Wang, P., Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper, Sens. Actuators B-Chem., 2015, vol. 209, p. 336.

    Article  CAS  Google Scholar 

  63. Silwana, B., Van der Horst, C., Iwuoha, E., and Somerset, V., A sensitive reduced graphene oxide-antimony nanofilm sensor for simultaneous determination of PGMs, J. Nano Res., 2016, vol. 44, p. 134.

    Article  CAS  Google Scholar 

  64. Zhang, B., Chen, J., Zhu, H., Yang, T., Zou, M., Zhang, M., and Du, M., Facile and green fabrication of size-controlled AuNPs/CNFs hybrids for the highly sensitive simultaneous detection of heavy metal ions, Electrochim. Acta, 2016, vol. 196, p. 422.

    Article  CAS  Google Scholar 

  65. Silwana, B., Van der Horst, C., Iwuoha, E., and Somerset, V., Reduced graphene oxide impregnated antimony nanoparticle sensor for electroanalysis of platinum group metals, Electroanalysis, 2016, vol. 28, p. 1.

    Article  CAS  Google Scholar 

  66. Van der Horst, C., Silwana, B., Iwuoha, E., and Somerset, V., Bismuth–silver bimetallic nanosensor application for the voltammetric analysis of dust and soil samples, J. Electroanal. Chem., 2015, vol. 752, p. 1.

    Article  CAS  Google Scholar 

  67. Fan, H.L., Zhou, S.F., Gao, J., and Liu, Y.Z., Continuous preparation of Fe3O4 nanoparticles through Impinging Stream-Rotating Packed Bed reactor and their electrochemistry detection toward heavy metal ions, J. Alloys Compd., 2016, vol. 671, p. 354.

    Article  CAS  Google Scholar 

  68. Li, W.J., Yao, X.Z., Guo, Z., Liu, J.H., and Huang, X.J., Fe3O4 with novel nanoplate-stacked structure: surfactant-free hydrothermal synthesis and application in detection of heavy metal ions, J. Electroanal. Chem., 2015, vol. 749, p. 75.

    Article  CAS  Google Scholar 

  69. Zhou, S.F., Han, X.J., and Liu, Y.Q., SWASV performance toward heavy metal ions based on a high-activity and simple magnetic chitosan sensing nanomaterials, J. Alloys Compd., 2016, vol. 684, p. 1.

    Article  CAS  Google Scholar 

  70. Zhang, X. and Zheng, J., Hollow carbon sphere supported Ag nanoparticles for promoting electrocatalytic performance of dopamine sensing, Sens. Actuator B‑Chem., 2019, vol. 290, p. 648.

    Article  CAS  Google Scholar 

  71. Alexander, C. and Bandyopadhyay, K., Two-dimensional palladium nanoparticle assemblies as electrochemical dopamine sensors, Inorg. Chim. Acta, 2017, vol. 468, p. 171.

    Article  CAS  Google Scholar 

  72. Mahmoudian, M.R., Basirun, W.J., Sookhakian, M., Woi, P.M., Zalnezhad, E., Hazarkhani, H., and Alias, Y., Synthesis and characterization of a-Fe2O3/polyaniline nanotube composite as electrochemical sensor for uric acid detection, Adv. Powder Technol., 2019, vol. 30, p. 384.

    Article  CAS  Google Scholar 

  73. Sharma, G., Gupta, V.K., Agarwal, S., Kumar, A., Thakur, S., and Pathania, D., Fabrication and characterization of Fe@MoPO nanoparticles: ion exchange behaviour and photocatalytic activity against malachite green, J. Mol. Liq., 2016, vol. 219, p. 1137.

    Article  CAS  Google Scholar 

  74. Toshima, N. and Yonieawa, T., Bimetallic nanoparticles: novel materials for physical and chemical applications, New J. Chem., 1998, vol. 11, p. 1179.

    Article  Google Scholar 

  75. Van der Horst, C., Silwana, B., Iwuoha, E., Gil, E., and Somerset, V., Improved detection of ascorbic acid with a bismuth–silver nanosensor, Food Anal. Methods, 2016, vol. 9, p. 2560.

    Article  Google Scholar 

  76. Van der Horst, C., Silwana, B., Gil, E., Iwuoha, E., and Somerset, V., Simultaneous detection of paracetamol, ascorbic acid, and caffeine using a bismuth–silver nanosensor, Electroanalysis, 2020, vol. 32, p. 3098.

    Article  CAS  Google Scholar 

  77. Arvinte, A., Crudu, I.-A., Doroftei, F., Timpu, D., and Pinteala, M., Electrochemical co-deposition of silver–gold nanoparticles on CNT-based electrode and their performance in electrocatalysis of dopamine, J. Electroanal. Chem., 2018, vol. 829, p. 184.

    Article  CAS  Google Scholar 

  78. Ma, L., Zhang, Q., Wu, C., Zhang, Y., and Zeng, L., PtNi bimetallic nanoparticles loaded MoS2 nanosheets: preparation and electrochemical sensing application for the detection of dopamine and uric acid, Anal. Chim. Acta, 2019, vol. 1055, p. 17.

    Article  CAS  PubMed  Google Scholar 

  79. Mallikarjuna, K., Veera Manohara Reddy, Y., Sravani, B., Madhavi, G., Kim, H., Agarwal, S., and Kumar Gupta, V., Simple synthesis of biogenic Pd–Ag bimetallic nanostructures for an ultrasensitive electrochemical sensor for sensitive determination of uric acid, J. Electroanal. Chem., 2018, vol. 822, p. 163.

    Article  CAS  Google Scholar 

  80. Gopalakrishnan, A., Sha, R., Vishnu, N., Kumar, R., and Badhulika, S., Disposable, efficient and highly selective electrochemical sensor based on cadmium oxide nanoparticles decorated screen-printed carbon electrode for ascorbic acid determination in fruit juices, Nano-Struct. Nano-Objects, 2018, vol. 16, p. 96.

    Article  CAS  Google Scholar 

  81. Van der Horst, C., Silwana, B., Iwuoha, E., and Somerset, V., Synthesis and characterization of bismuth-silver nanoparticles for electrochemical sensor applications, Anal. Lett., 2015, vol. 48, no. 8, p. 1311.

    Article  CAS  Google Scholar 

  82. Liu, L., Liu, L., Wang, Y., and Ye, B.-C., A novel electrochemical sensor based on bimetallic metal-organic framework-derived porous carbon for detection of uric acid, Talanta, 2019, vol. 199, p. 478.

    Article  CAS  PubMed  Google Scholar 

  83. Harraz, F.A., Faisal, M., Al-Salami, A.E., El-Toni, A.M., Almadiy, A.A., Al-Sayari, S.A., and Al-Assiri, M.S., Silver nanoparticles decorated stain-etched mesoporous silicon for sensitive, selective detection of ascorbic acid, Mater. Lett., 2019, vol. 234, p. 96.

    Article  CAS  Google Scholar 

  84. Zhang, Y., Liu, P., Xie, S., Chen, M., Zhang, M., Cai, Z., Liang, R., Zhang, Y., and Cheng, F., A novel electrochemical ascorbic acid sensor based on branch-trunk Ag hierarchical nanostructures, J. Electroanal. Chem., 2018, vol. 818, p. 250.

    Article  CAS  Google Scholar 

  85. Huang, D., Li, X., Chen, M., Chen, F., Wan, Z., Rui, R., Wang, R., Fan, S., and Wu, H., An electrochemical sensor based on a porphyrin dye-functionalized multiwalled carbon nanotubes hybrid for the sensitive determination of ascorbic acid, J. Electroanal. Chem., 2019, vol. 841, p. 101.

    Article  CAS  Google Scholar 

  86. Inagaki, C.S., Oliveira, M.M., Bergamini, M.F., Marcolino-Junior, L.H., and Zarbin, A.J.G., Facile synthesis and dopamine sensing application of three-component nanocomposite thin films based on polythiophene, gold nanoparticles and carbon nanotubes, J. Electroanal. Chem., 2019, vol. 840, p. 208.

    Article  CAS  Google Scholar 

  87. Liu, X., Fu, Y., Sheng, Q., and Zheng, J., Au nanoparticles attached Ag@C core–shell nanocomposites for highly selective electrochemical detection of dopamine, Microchem. J., 2019, vol. 146, p. 509.

    Article  CAS  Google Scholar 

  88. Jiao, J., Zuo, J., Pang, H., Tan, L., Chen, T., and Ma, H., A dopamine electrochemical sensor based on Pd–Pt alloy nanoparticles decorated polyoxometalate and multiwalled carbon nanotubes, J. Electroanal. Chem., 2018, vol. 827, p. 103.

    Article  CAS  Google Scholar 

  89. Fazio, E., Spadaro, S., Bonsignore, M., Lavanya, N., Sekar, C., Leonardi, S.G., Neri, G., and Neri, F., Molybdenum oxide nanoparticles for the sensitive and selective detection of dopamine, J. Electroanal. Chem., 2018, vol. 814, p. 91.

    Article  CAS  Google Scholar 

  90. Sookhakian, M., Basirun, W.J., Goh, B.T., Woi, P.M., and Alias, Y., Molybdenum disulfide nanosheet decorated with silver nanoparticles for selective detection of dopamine, Colloids Surf. B: Biointerfaces, 2019, vol. 176, p. 80.

    Article  CAS  PubMed  Google Scholar 

  91. Zeng, Y., Zhu, Z., Du, D., and Lin, Y., Nanomaterial-based electrochemical biosensors for food safety, J. Electroanal. Chem., 2016, vol. 781, p. 147.

    Article  CAS  Google Scholar 

  92. Li, Y., Jing, T., Xu, G., Tian, J., Dong, M., Shao, Q., Wang, B., Wang, Z., Zheng, Y., Yang, C., and Guo, Z., 3-D magnetic graphene oxide-magnetite poly(vinyl alcohol) nanocomposite substrates for immobilizing enzyme, Polymer, 2018, vol. 149, p. 13.

    Article  CAS  Google Scholar 

  93. Mengyao, D., Qiang, L., Liu, H., Chuntai, L., Wujcik, E.K., Shao, Q., Ding, T., Ma, X., Shen, C., and Guo, Z., Thermoplastic polyurethane–carbon black nanocomposite coating: fabrication and solid particle erosion resistance, Polymer, 2018, vol. 158, p. 381.

    Article  CAS  Google Scholar 

  94. Zhang, J., Li, P., Zhang, Z., Wang, X., Tang, J., Liu, H., Shao, Q., Ding, T., Umar, A., and Guo, Z., Solvent-free graphene liquids: promising candidates for lubricants without the base oil, J. Colloid Interface Sci., 2019, vol. 542, p. 159.

    Article  CAS  PubMed  Google Scholar 

  95. Jiang, D., Murugadoss, V., Wang, Y., Lin, J., Ding, T., Wang, Z., Shao, Q., Wang, C., Liu, H., Lu, N., Wei, R., Subramania, A., and Guo, Z., Electromagnetic interference shielding polymer sand nanocomposites—a review, Polym. Rev., 2019, vol. 59, no. 2, p. 280.

    Article  CAS  Google Scholar 

  96. Song, B., Wang, T., Sun, H., Shao, Q., Zhao, J., Song, K., Hao, L., Wang, L., and Guo, Z., Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance, Dalton Trans., 2017, vol. 46, p. 15769.

    Article  CAS  PubMed  Google Scholar 

  97. Wu, N., Xu, D., Wang, Z., Wang, F., Liu, J., Liu, W., Shao, Q., Liu, H., Gao, Q., and Guo, Z., Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods, Carbon, 2019, vol. 145, p. 433.

    Article  CAS  Google Scholar 

  98. Cheng, C., Fan, R., Ren, Y., Ding, T., Qian, L., Guo, J., Li, X., An, L., Lei, Y., Yin, Y., and Guo, Z., Radiofrequency negative permittivity in random carbon nanotubes/alumina nanocomposites, Nanoscale, 2017, vol. 9, p. 5779.

    Article  CAS  PubMed  Google Scholar 

  99. Du, H., Zhao, C.X., Lin, J., Guo, J., Wang, B., Zhen, H., Shao, Q., Pan, D., Wujcik, E.K., and Guo, Z., Carbon nanomaterials in direct liquid fuel cells, Chem. Rec., 2018, vol. 18, p. 1365.

    Article  CAS  PubMed  Google Scholar 

  100. Gu, H., Zhang, H., Ma, C., Xu, X., Wang, Y., Wang, Z., Wei, R., Liu, H., Liu, C., Shao, Q., Mai, X., and Guo, Z., Trace electrosprayed nanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: simultaneously strengthening and toughening epoxy, Carbon, 2019, vol. 142, p. 131.

    Article  CAS  Google Scholar 

  101. Huang, J., Cao, Y., Shao, Q., Peng, X., and Guo, Z., Magnetic nanocarbon adsorbents with enhanced hexavalent chromium removal: morphology dependence of fibrillar vs particulate structures, Ind. Eng. Chem. Res., 2017, vol. 56, p. 10689.

    Article  CAS  Google Scholar 

  102. Li, Z., Wang, B., Qin, X., Wang, Y., Liu, C., Shao, Q., Wang, N., Zhang, J., Shen, C., and Guo, Z., Super hydrophobic/superoleophilic polycarbonate/carbon nanotubes porous monolith for selective oil adsorption from water, ACS Sustain. Chem. Eng., 2018, vol. 6, p. 13747.

    Article  CAS  Google Scholar 

  103. Wang, C., Murugadoss, V., Kong, J., He, Z., Mai, X., Shao, Q., Chen, Y., Guo, L., Liu, C., Angaiah, S., and Guo, Z., Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding, Carbon, 2018, vol. 140, p. 696.

    Article  CAS  Google Scholar 

  104. Thamilselvan, A., Manivel, P., Rajagopal, V., Nesakumar, N., and Suryanarayanan, V., Improved electrocatalytic activity of Au@Fe3O4 magnetic nanoparticles for sensitive dopamine detection, Colloids Surf. B: Biointerfaces, 2019, vol. 180, p. 1.

    Article  CAS  PubMed  Google Scholar 

  105. Hu, B., Liu, Y., Wang, Z-W., Song, Y., Wang, M., Zhang, Z., and Liu, C.-S., Bimetallic-organic framework derived porous Co3O4/Fe3O4/C-loaded g-C3N4 nanocomposites as non-enzymic electrocatalysis oxidization toward ascorbic acid, dopamine acid, and uric acid, Appl. Surf. Sci., 2018, vol. 441, p. 694.

    Article  CAS  Google Scholar 

  106. Zhao, G., Wang, H., and Liu, G., Recent advances in chemically modified electrodes, microfabricated devices and injection systems for the electrochemical detection of heavy metals: a review, Int. J. Electrochem. Sci., 2017, vol. 12, p. 8622.

    Article  CAS  Google Scholar 

  107. Geim, A.K. and Novoselov, K.S., The rise of graphene, Nat. Mater., 2007, vol. 6, p. 183.

    Article  CAS  PubMed  Google Scholar 

  108. Shahmiri, M.R., Bahari, A., Karimi-Maleh, H., Hosseinzadeh, R., and Mirnia, N., Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen, Sens. Actuators B-Chem., 2013, vol. 177, p. 70.

    Article  CAS  Google Scholar 

  109. Brownson, D.A.C. and Banks, C.E., Graphene electrochemistry: an overview of potential applications, Analyst, 2010, vol. 135, p. 2768.

    Article  CAS  PubMed  Google Scholar 

  110. Wang, J., Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis, 2005, vol. 17, p. 7.

    Article  CAS  Google Scholar 

  111. Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., and Lin, Y., Graphene-based electrochemical sensors and biosensors: a review, Electroanalysis, 2010, vol. 22, p. 1027.

    Article  CAS  Google Scholar 

  112. Zhou, M., Zhai, Y., and Dong, S., Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem., 2009, vol. 81, p. 5603.

    Article  CAS  PubMed  Google Scholar 

  113. Yang, H., Zhao, J., Qiu, M., Sun, P., Han, D., Niu, L., and Cui, G., Hierarchical bi-continuous Pt decorated nanoporous Au–Sn alloy on carbon fibre paper for ascorbic acid, dopamine and uric acid simultaneous sensing, Biosens, Bioelectron., 2019, vols. 124–125, p. 191.

    Article  CAS  Google Scholar 

  114. Zhao, Y., Yang, Z., Fan, W., Wang, Y., Li, G., Cong, H., and Yuan, H., Carbon nanotube/carbon fibre electrodes via chemical vapour deposition for simultaneous determination of ascorbic acid, dopamine and uric acid, Arab. J. Chem., 2018, vol. 13, no. 1.

  115. Reddy, Y.V.M., Sravani, B., Agarwal, S., Gupta, V.K., and Madhavi, G., Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode, J. Electroanal. Chem., 2018, vol. 820, p. 168.

    Article  CAS  Google Scholar 

  116. Beluomini, M.A., da Silva, J.L., Cardoso de Sa, A., Buffon, E., Pereira, T.C., and Stradiotto, N.R., Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: a review, J. Electroanal. Chem., 2019, vol. 840, p. 343.

    Article  CAS  Google Scholar 

  117. Edris, N.M.M.A., Abdullah, J., Kamaruzaman, S., Saiman, M.I., and Sulaiman, Y., Electrochemical reduced graphene oxide-poly (eriochrome black T)/gold nanoparticles modified glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid, Arab. J. Chem., 2018, vol.11, p. 1301.

    Article  CAS  Google Scholar 

  118. Zou, C., Zhong, J., Li, S., Wang, H., Wang, J., Yan, B., and Du, Y., Fabrication of reduced graphene oxide-bimetallic PdAu nanocomposites for the electrochemical determination of ascorbic acid, dopamine, uric acid and rutin, J. Electroanal. Chem., 2017, vol. 805, p. 110.

    Article  CAS  Google Scholar 

  119. Pruneanu, S., Biris, A.R., Pogacean, F., Socaci, C., Coros, M., Rosu, M.C., Watanabe, F., and Biris, A.S., The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes, Electrochim. Acta, 2015, vol. 154, p. 197.

    Article  CAS  Google Scholar 

  120. Shang, L., Zhao, F., and Zeng, B., Highly dispersive hollow PdAg alloy nanoparticles modified ionic liquid functionalized graphene nanoribbons for electrochemical sensing of nifedipine, Electrochim. Acta, 2015, vol. 168, p. 330.

    Article  CAS  Google Scholar 

  121. Tığ, G.A., Development of electrochemical sensor for detection of ascorbic acid, dopamine, uric acid and L‑tryptophan based on Ag nanoparticles and poly(L-arginine)–graphene oxide composite, J. Electroanal. Chem., 2017, vol. 807, p. 19.

    Article  CAS  Google Scholar 

  122. Poudyal, D.C., Satpati, A.K., Kumar, S., and Haram, S.K., High sensitive determination of dopamine through catalytic oxidation and preconcentration over gold–multiwall carbon nanotubes composite modified electrode, Mat. Sci. Eng. C, 2019, vol. 103, p. 109788.

    Article  CAS  Google Scholar 

  123. Xu, Q., Yuana, H., Dong, X., Zhang, Y., Asif, M., Dong, Z., He, W., Ren, J., Sun, Y., and Xiao, F., Dual nanoenzyme modified microelectrode based on carbon fibre coated with Au–Pd alloy nanoparticles decorated graphene quantum dots assembly for electrochemical detection in clinical cancer samples, Biosens. Bioelectron., 2018, vol. 107, p. 153.

    Article  PubMed  CAS  Google Scholar 

  124. Cui, L., Wu, J., and Ju, H., Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials, Biosens. Bioelectron., 2015, vol. 63, p. 276.

    Article  CAS  PubMed  Google Scholar 

  125. Wan, Q., Yu, F., Zhu, L., Wang, X., and Yang, N., Bucky-gel coated glassy carbon electrodes, for voltammetric detection of femtomolar levelled lead ions, Talanta, 2010, vol. 82, p. 1820.

    Article  CAS  PubMed  Google Scholar 

  126. Cerovac, S., Guzsvány, V., Kónya, Z., Ashrafi, A.M., Švancara, I., Rončević, S., Kukovecz, Á., Dalmacija, B., and Vytřas, K., Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth–oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode, Talanta, 2015, vol. 134, p. 640.

    Article  CAS  PubMed  Google Scholar 

  127. Wei, Y., Yang, R., Chen, X., Wang, L., Liu, J.H., and Huang, X.J., A cation trap for anodic stripping voltammetry: NH3-plasma-treated carbon nanotubes for adsorption and detection of metal ions, Anal. Chim. Acta, 2012, vol. 755, p. 54.

    Article  CAS  PubMed  Google Scholar 

  128. Afkhami, A., Ghaedi, H., Madrakian, T., and Rezaeivala, M., Highly sensitive simultaneous electrochemical determination of trace amounts of Pb(II) and Cd(II) using a carbon paste electrode modified with multi-walled carbon nanotubes and a newly synthesized Schiff base, Electrochim. Acta, 2013, vol. 89, p. 377.

    Article  CAS  Google Scholar 

  129. Chang, Y.H., Woi, P.M., and Alias, Y.B., The selective electrochemical detection of dopamine in the presence of ascorbic acid and uric acid using electro-polymerised-β-cyclodextrin incorporated f-MWCNTs/polyaniline modified glassy carbon electrode, Microchem. J., 2019, vol. 148, p. 322.

    Article  CAS  Google Scholar 

  130. Savk, A., Özdil, B., Demirkan, B., Nas, M.S., Calimli, M.H., Alma, M.H., Inamuddin, Asiri, A.M., and Şen, F., Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid, Materials Sci. Eng. C, 2019, vol. 99, p. 248.

    Article  CAS  Google Scholar 

  131. Wang, H., Xiao, L.-G., Chu, X.-F., Chi, Y.-D., and Yang, X.-T., Rational design of gold nanoparticle/graphene hybrids for simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid, Chin. J. Anal. Chem., 2016, vol. 44, no. 12, p. e1617.

    Article  Google Scholar 

  132. Zhu, Q., Bao, J., Huo, D., Yang, M., Wu, H., Hou, C., Zhao, Y., Luo, X., and Fa, H., 3DGH–Fc based electrochemical sensor for the simultaneous determination of ascorbic acid, dopamine and uric acid, J. Electroanal. Chem., 2017, vol. 799, p. 459.

    Article  CAS  Google Scholar 

  133. Wang, M., Cui, M., Liu, W., and Liu, X., Highly dispersed conductive polypyrrole hydrogels as sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid, J. Electroanal. Chem., 2019, vol. 832, p. 174.

    Article  CAS  Google Scholar 

  134. Tukimin, N., Abdullah, J., and Sulaiman, Y., Electrodeposition of poly(3,4-ethylenedioxythiophene)/reduced graphene oxide/manganese dioxide for simultaneous detection of uric acid, dopamine and ascorbic acid, J. Electroanal. Chem., 2018, vol. 820, p. 74.

    Article  CAS  Google Scholar 

  135. Thangamuthu, R., Senthil Kumar, S.M., and Chandrasekara Pillai, K., Direct amperometric determination of l-ascorbic acid (Vitamin C) at octacyanomolybdate-doped-poly(4-vinylpyridine) modified electrode in fruit juice and pharmaceuticals, Sens. Actuators B-Chem., 2007, vol. 120, p. 745.

    Article  CAS  Google Scholar 

  136. Ali, A., Jamal, R., Abdiryim, T., and Huang, X., Synthesis of monodispersed PEDOT/Au hollow nanospheres and its application for electrochemical determination of dopamine and uric acid, J. Electroanal. Chem., 2017, vol. 787, p. 110.

    Article  CAS  Google Scholar 

  137. Zhang, K., Chen, X., Li, Z., Wang, Y., Sun, S., Wang, L., Guo, T., Zhang, D., Xu, Z., Zhou, X., and Lu, X., Au–Pt bimetallic nanoparticles decorated on sulfonated nitrogen sulfur codoped graphene for simultaneous determination of dopamine and uric acid, Talanta, 2018, vol. 178, p. 315.

    Article  CAS  PubMed  Google Scholar 

  138. Hou, J., Xu, C., Zhao, D., and Zhou, J., Facile fabrication of hierarchical nanoporous AuAg alloy and its highly sensitive detection towards dopamine and uric acid, Sens. Actuators B-Chem., 2016, vol. 225, p. 241.

    Article  CAS  Google Scholar 

  139. Immanuel, S., Aparna, T.K., and Sivasubramanian, R., A facile preparation of Au–SiO2 nanocomposite for simultaneous electrochemical detection of dopamine and uric acid, Surf. Interfaces, 2019, vol. 14, p. 82.

    Article  CAS  Google Scholar 

  140. Krishnamoorthy, K., Sudha, V., Kumar, S.M.S., and Thangamuthu, R., Simultaneous determination of dopamine and uric acid using copper oxide nano-rice modified electrode, J. Alloys Compd., 2018, vol. 748, p. 338.

    Article  CAS  Google Scholar 

  141. Rahman, M.M., Lopa, N.S., Ju, M.J., and Lee, J.-J., Highly sensitive and simultaneous detection of dopamine and uric acid at graphene nanoplatelet-modified fluorine-doped tin oxide electrode in the presence of ascorbic acid, J. Electroanal. Chem., 2017, vol. 792, p. 54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vernon Somerset.

Ethics declarations

No conflict of interest was declared by Charlton van der Horst and Vernon Somerset.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charlton van der Horst, Vernon Somerset Nanoparticles Application in the Determination of Uric Acid, Ascorbic Acid, and Dopamine. Russ J Electrochem 58, 341–359 (2022). https://doi.org/10.1134/S102319352205010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319352205010X

Keywords:

Navigation