Skip to main content
Log in

Compacts of Boron-Doped Synthetic Diamond: Acceleration of Cathodic Reactions by Plasma-Assisted and Electrochemical Treatment of the Electrodes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Diamond compacts were synthesized by thermobaric processing of graphite and amorphous boron mixtures under the conditions of the diamond thermodynamic stability (at a pressure of 8–9 GPa and temperature of ∼2500 K). The boron-doped diamond-compact electrode surface was modified by its subjecting to the action of cathodic, anodic, and cathodic–anodic electrolytic plasma formed under the applying of voltage pulses with amplitude up to 300 V in Na2SO4 aqueous solution. It was found by using rotating disc electrode that the applying of sole cathodic–anodic plasma provides negligible catalytic effect with respect to the oxygen reduction reaction. However, thus pre-processed electrode acquired significant electrocatalytical activity upon the cathodic treatment, with the consequence that the reaction of O2 reduction to H2O passed predominantly by the four-electron mechanism. At the same time, the cathodic polarization of the plasma-modified electrode produced no effect on the rate constant of the electron transfer in the [Ru(NH3)6]2+/3+ redox couple; yet, the rate constant in the [Fe(CN)6]4–/3– one increased significantly. Hypothetically, the observed electrocatalytical effect in the oxygen reduction reaction is due to the formation, under the combined action of the cathodic–anodic plasma and cathodic polarization, of quinone groups at the boron-doped diamond surface; they play the role of active sites for the oxygen four-electron reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Pleskov, Yu.V., Sakharova, A.Ya., Krotova, M.D., Bouilov, L.L., and Spitsyn, B.V., Photoelectrochemical properties of semiconductor diamond, Sov. Electrochem., 1987, vol. 24, p. 69.

    Google Scholar 

  2. Yang, N., Foord, J.S., and Jiang, X., Diamond electrochemistry at the nanoscale: A review, Carbon, 2016, vol. 99, p. 90. https://doi.org/10.1016/j.carbon.2015.11.061

    Article  CAS  Google Scholar 

  3. Cobb, S.J., Ayres, Z.J., and Macpherson, J.V., Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century, Ann. Rev. Anal. Chem., 2018, vol. 11, p. 463. https://doi.org/10.1146/annurev-anchem-061417-010107

    Article  CAS  Google Scholar 

  4. Yang, N., Yu, S., Macpherson, J.V., Einaga, Y., Zhao, H., Zhao, G., Swain, G.M., and Jiang, X., Conductive diamond: synthesis, properties, and electrochemical applications, Chem. Soc. Rev., 2019, vol. 48, p. 157. https://doi.org/10.1039/c7cs00757d

    Article  CAS  PubMed  Google Scholar 

  5. Pleskov, Y.V., Krotova, M.D., Elkin, V.V., and Ekimov, E.A., Electrochemical Behaviour of Boron-doped Diamond Compacts – a New Electrode Material, Electrochim. Acta, 2016, vol. 201, p. 268. https://doi.org/10.1016/j.electacta.2015.09.075

    Article  CAS  Google Scholar 

  6. Gao, F., Thomann, R., and Nebel, C.E., Aligned Pt–diamond core–shell nanowires for electrochemical catalysis, Electrochem. Commun., 2015, vol. 50, p. 32. https://doi.org/10.1016/j.elecom.2014.11.006

    Article  CAS  Google Scholar 

  7. Bian, L.Y., Wang, Y.H., Zang, J.B., Yu, J.K., and Huang, H., Electrodeposition of Pt nanoparticles on undoped nanodiamond powder for methanol oxidation electrocatalysts, J. Electroanal. Chem., 2010, vol. 644, p. 85. https://doi.org/10.1016/j.jelechem.2010.04.001

    Article  CAS  Google Scholar 

  8. Salazar-Banda, G.R., Eguiluz, K.I.B., and Avaca, L.A., Boron-doped diamond powder as catalyst support for fuel cell applications, Electrochem. Commun., 2007, vol. 9, p. 59. https://doi.org/10.1016/j.elecom.2006.08.038

    Article  CAS  Google Scholar 

  9. Wang, Y., Zang, J., Dong, L., Pan, H., Yuan, Y., and Wang, Y., Graphitized nanodiamond supporting PtNi alloy as stable anodic and cathodic electrocatalysts for direct methanol fuel cell, Electrochim. Acta, 2013, vol. 113, p. 583. https://doi.org/10.1016/j.electacta.2013.09.091

    Article  CAS  Google Scholar 

  10. Ekimov, E.A., Sidorov, V.A., Maslakov, K.I., Sirotinkin, B.P., Krotova, M.D., and Pleskov, Yu.V., Influence of growth medium composition on the incorporation of boron in HPHT diamond, Diamond Related Mater., 2018, vol. 89, p. 101. https://doi.org/10.1016/j.diamond.2018.08.010

    Article  CAS  Google Scholar 

  11. Pleskov, Y.V., Krotova, M.D., Elkin, V.V., and Ekimov, E.A., Compacts of Boron-Doped Synthetic Diamond: Lowering of Synthesis Temperature and Its Effect on the Doping Level and Electrochemical Behavior, Russ. J. Electrochem., 2017, vol. 53, p. 1345. https://doi.org/10.1134/s1023193517120084

    Article  CAS  Google Scholar 

  12. Liu, Y., Zhang, Y., Cheng, K., Quan, X., Fan, X., Su, Y., Chen, S., Zhao, H., Zhang, Y., Yu, H., and Hoffmann, M.R., Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron- and Nitrogen–Co-doped Nanodiamond, Angew. Chem. Int. Ed., 2017, vol. 56, p. 15607. https://doi.org/10.1002/anie.201706311

    Article  CAS  Google Scholar 

  13. Hutton, L.A., Iacobini, J.G., Bitziou, E., Channon, R.B., Newton, M.E., and Macpherson, J.V., Examination of the Factors Affecting the Electrochemical Performance of Oxygen-Terminated Polycrystalline Boron-Doped Diamond Electrodes, Anal. Chem., 2013, vol. 85, p. 7230. https://doi.org/10.1021/ac401042t

    Article  CAS  PubMed  Google Scholar 

  14. Granger, M.C., Witek, M., Xu, J., Wang, J., Hupert, M., Hanks, A., Koppang, M.D., Butler, J.E., Lucazeau, G., Mermoux, M., Strojek, J.W., and Swain, G.M., Standard Electrochemical Behavior of High-Quality, Boron-Doped Polycrystalline Diamond Thin-Film Electrodes, Anal. Chem., 2000, vol. 72, p. 3793. https://doi.org/10.1021/ac0000675

    Article  CAS  PubMed  Google Scholar 

  15. Martin, H.B., Hydrogen and Oxygen Evolution on Boron-Doped Diamond Electrodes, J. Electrochem. Soc., 1996, vol. 143, p. L133. https://doi.org/10.1149/1.1836901

    Article  CAS  Google Scholar 

  16. Bennett, J.A., Wang, J., Show, Y., and Swain, G.M., Effect of sp 2-Bonded Nondiamond Carbon Impurity on the Response of Boron-Doped Polycrystalline Diamond Thin-Film Electrodes, J. Electrochem. Soc., 2004, vol. 151, p. E306. https://doi.org/10.1149/1.1780111

    Article  CAS  Google Scholar 

  17. Yano, T., Popa, E., Tryk, D.A., Hashimoto, K., and Fujishima, A., Electrochemical Behavior of Highly Conductive Boron-Doped Diamond Electrodes for Oxygen Reduction in Alkaline Solution, J. Electrochem. Soc., 1998, vol. 145, p. 1870. https://doi.org/10.1149/1.1838569

    Article  CAS  Google Scholar 

  18. Yano, T., Popa, E., Tryk, D.A., Hashimoto, K., and Fujishima, A., Electrochemical Behavior of Highly Conductive Boron-Doped Diamond Electrodes for Oxygen Reduction in Acid Solution, J. Electrochem. Soc., 1999, vol. 146, p. 1081. https://doi.org/10.1149/1.1391724

    Article  CAS  Google Scholar 

  19. Dubrovinskaia, N., Wirth, R., Wosnitza, J., Papageorgiou, T., Braun, H. F., Miyajima, N., and Dubrovinsky, L., An insight into what superconducts in polycrystalline boron-doped diamonds based on investigations of microstructure, Proc. Nat. Acad. Sci., 2008, vol. 105, p. 11619. https://doi.org/10.1073/pnas.0801520105

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ekimov, E.A., Ralchenko, V., and Popovich, A., Synthesis of superconducting boron-doped diamond compacts with high elastic moduli and thermal stability, Diamond Related Mater., 2014, vol. 50, p. 15. https://doi.org/10.1016/j.diamond.2014.09.001

    Article  CAS  Google Scholar 

  21. Vasiliev, V.P., Kotkin, A.S., Kochergin, V.K., Manzhos, R.A., and Krivenko, A.G., Oxygen reduction reaction at few-layer graphene structures obtained via plasma-assisted electrochemical exfoliation of graphite, J. Electroanal. Chem., 2019, vol. 851, p. 113440. https://doi.org/10.1016/j.jelechem.2019.113440

    Article  CAS  Google Scholar 

  22. Belkin, P.N., Yerokhin, A., and Kusmanov, S.A., Plasma electrolytic saturation of steels with nitrogen and carbon, Surf. Coat. Technol., 2016, vol. 307, p. 1194. https://doi.org/10.1016/j.surfcoat.2016.06.027

    Article  CAS  Google Scholar 

  23. Pleskov, Yu.V. and Filinovskii, V.Yu., The Rotating Disc Electrode, New York: Consultants Bureau, 1976.

    Book  Google Scholar 

  24. Qu, L.T., Liu,Y., Baek, J.B., and Dai, L.M., Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano, 2010, vol. 4, p. 1321. https://doi.org/10.1021/nn901850u

    Article  CAS  PubMed  Google Scholar 

  25. Jürmann, G. and Tammeveski, K., Electroreduction of oxygen on multi-walled carbon nanotubes modified highly oriented pyrolytic graphite electrodes in alkaline solution, J. Electroanal. Chem., 2006, vol. 597, p. 119. https://doi.org/10.1016/j.jelechem.2006.09.002

    Article  CAS  Google Scholar 

  26. Duo, I., Levy-Clement, C., Fujishima, A., and Comninellis, C., Electron Transfer Kinetics on Boron-Doped Diamond Part I: Influence of Anodic Treatment, J. Appl. Electrochem., 2004, vol. 34, p. 935. https://doi.org/10.1023/b:jach.0000040525.76264.16

    Article  CAS  Google Scholar 

  27. Krivenko, A.G., Manzhos, R.A., and Kochergin, V.K., Efect of Plasma-Assisted Electrochemical Treatment of Glassy Carbon Electrode on the Reversible and Irreversible Electrode Reactions, Russ. J. Electrochem., 2019, vol. 55, p. 663. https://doi.org/10.1134/S102319351907005X

    Article  CAS  Google Scholar 

  28. Ivandini, T.A., Watanabe, T., Matsui, T., Ootani, Y., Iizuka, S., Toyoshima, R., and Einaga, Y., Influence of the Surface Orientation on the Electrochemical Properties of Boron-Doped Diamond, J. Phys. Chem. C, 2019, vol. 123, p. 5336. https://doi.org/10.1021/acs.jpcc.8b10406

    Article  CAS  Google Scholar 

  29. Ghodbane, S., Ballutaud, D., Omnès, F., and Agnès, C., Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films, Diamond Related Mater., 2010, vol. 19, p. 630. https://doi.org/10.1016/j.diamond.2010.01.014

    Article  CAS  Google Scholar 

  30. Ryl, J., Cieslik, M., Zielinski, A., Ficek, M., Dec, B., Darowicki, K., and Bogdanowicz, R., High-Temperature Oxidation of Heavy Boron-Doped Diamond Electrodes: Microstructural and Electrochemical Performance Modification, Materials, 2020, vol. 13, p. 964. https://doi.org/10.3390/ma13040964

    Article  CAS  PubMed Central  Google Scholar 

  31. Goeting, C.H., Marken, F., Gutiérrez-Sosa, A., Compton, R.G., and Foord, J.S., Electrochemically induced surface modifications of boron-doped diamond electrodes: an X-ray photoelectron spectroscopy study, Diamond Related Mater., 2000, vol. 9, p. 390. https://doi.org/10.1016/s0925-9635(99)00267-8

    Article  CAS  Google Scholar 

  32. Yokoya, T., Ikenaga, E., Kobata, M., Okazaki, H., Kobayashi, K., Takeuchi, A., Kobayashi, K., Kawarada, H., and Oguchi, T., Core-level electronic structure evolution of heavily boron-doped superconducting diamond studied with hard X-ray photoemission spectroscopy, Phys. Rev. B, 2007, vol. 75, p. 205117. https://doi.org/10.1103/physrevb.75.205117

    Article  Google Scholar 

  33. Girard, H., Simon, N., Ballutaud, D., Herlem, M., and Etcheberry, A., Effect of anodic and cathodic treatments on the charge transfer of boron doped diamond electrodes, Diamond Related Mater., 2007, vol. 16, p. 316. https://doi.org/10.1016/j.diamond.2006.06.009

    Article  CAS  Google Scholar 

  34. Mooste, M., Kibena-Põldsepp, E., Matisen, L., and Tammeveski, K., Oxygen Reduction on Anthraquinone Diazonium Compound Derivatised Multi-walled Carbon Nanotube and Graphene Based Electrodes, Electroanalysis, 2016, vol. 29, p. 548. https://doi.org/10.1002/elan.201600451

    Article  CAS  Google Scholar 

  35. Ayres, Z.J., Cobb, S.J., Newton, M.E., and Macpherson, J.V., Quinone electrochemistry for the comparative assessment of sp2 surface content of boron doped diamond electrodes, Electrochem. Commun., 2016, vol. 72, p. 59. https://doi.org/10.1016/j.elecom.2016.08.024

    Article  CAS  Google Scholar 

  36. Krivenko, A.G., Manzhos, R.A., Komarova, N.S., Kotkin, A.S., Kabachkov, E.N., and Shul’ga, Yu.M., Comparative Study of Graphite and the Products of Its Electrochemical Exfoliation, Russ. J. Electrochem., 2018, vol. 54, p. S32. https://doi.org/10.1134/S1023193518110058

  37. Regisser, F., Lavoie, M.-A., Champagne, G.Y., and Belanger, D., Randomly oriented graphite electrode. Part 1. Effect of electrochemical pretreatment on the electrochemical behavior and chemical composition of the electrode, J. Electroanal. Chem., 1996, vol. 415, p. 47. https://doi.org/10.1016/S0022-0728(96)04636-0

    Article  CAS  Google Scholar 

  38. Quan, M., Sanchez, D., Wasylkiw, M.F., and Smith, D.K., Voltammetry of Quinones in Unbuffered Aqueous Solution: Reassessing the Roles of Proton Transfer and Hydrogen Bonding in the Aqueous Electrochemistry of Quinones, J. Am. Chem. Soc., 2007, vol. 129, p. 12847. https://doi.org/10.1021/ja0743083

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is carried out under the State contract АААА-А19-119061890019-5. The using of equipment of the Multi-User Analytical Center, Institute of Problems of Chemical Physics, RAS, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Krivenko or Yu. V. Pleskov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivenko, A.G., Manzhos, R.A., Kochergin, V.K. et al. Compacts of Boron-Doped Synthetic Diamond: Acceleration of Cathodic Reactions by Plasma-Assisted and Electrochemical Treatment of the Electrodes. Russ J Electrochem 58, 520–527 (2022). https://doi.org/10.1134/S1023193522050068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522050068

Keywords:

Navigation