Skip to main content
Log in

Preparation of a Modified Electrode Using Electrodeposition of Cu Followed by Galvanic Replacement of Ag: Application for Electrocatalytic Oxidation of Ethylen Glychol

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this work Cu modified carbon paste electrode was prepared using Cu2+ ions reduction according to electrodeposition method. Then using galvanic replacement reaction, one layer of Ag was deposited on the surface of electrode. The electrochemical behavior of the modified carbon paste electrode was studied by electrochemical methods such as cyclic voltammetry and chronoamperometry. This Ag/Cu modified carbon paste electrode shows good activity for electrocatalytic oxidation of ethylene glychol. The parameters which are effective on response of modified electrode to oxidation of ethylene glychol, such as applied potential and duration of potential applying for electrodeposition of Cu, duration of galvanic replacement reaction in AgNO3 solution and the kind of acidic solution for electrodeposition of Cu were optimized. The morphology of modified carbon paste electrodes was investigated by field emission scanning electron microscopy and Energy-dispersive X-ray spectroscopy. Stability of prepared electrode as an anode for oxidation of ethylene glychol was studied. Finaly current density of ethylene glychol oxidation at the surface of proposed electrode was compared with other electrodes reported in literatures. Results show that proposed electrode, owing to having advantages such as appropriate current density, long time stability, not poisoning with ethylene glychol oxidation products, easy and low cost preparation method, can be a good choice as anode of fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Sartorida Silva, F. and Miguelde Souza, T., Novel materials for solid oxide fuel cell technologies: s literature review, Int. J. Hydrogen Energy, 2017, vol. 42, p. 26020.

    Article  Google Scholar 

  2. Wang, G., Yu, Y., Liu, H., Gong, C., Wen, S., Wang, X., and Tu, Z., Progress on design and development of polymer electrolyte membrane fuel cell systems for vehicle applications: a review, Fuel Process. Technol., 2018, vol. 179, p. 203.

    Article  CAS  Google Scholar 

  3. Lu, X., Wu, Y., Lian, J., Zhang, Y., Chen, C., Wang, P., and Meng, L., Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm, Energy Convers. Manag., 2020, vol. 205, p. 112474.

    Article  Google Scholar 

  4. Olabi, A.G., Wilberforce, T., and Abdelkareem, M.A., Fuel cell application in the automotive industry and future perspective, Energy, 2021, vol. 214, p. 118955.

    Article  Google Scholar 

  5. Serov, A. and Kwak, C., Recent achievements in direct ethylene glycol fuel cells, Appl. Catal. B: Environ., 2010, vol. 97, p. 1.

    Article  CAS  Google Scholar 

  6. An, L. and Chen, R., Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production, J. Power Sources, 2016, vol. 329, p. 484.

    Article  CAS  Google Scholar 

  7. Livshits, V. and Peled, E., Progress in the development of a high-power, direct ethylene glycol fuel cell, J. Power Sources, 2006, vol. 161, p. 1187.

    Article  CAS  Google Scholar 

  8. Yue, H., Zhao, Y., Ma, X., and Gong, J., Ethylene glycol: properties, synthesis, and applications, Chem. Soc. Rev., 2012, vol. 41, p. 4218.

    Article  CAS  PubMed  Google Scholar 

  9. Kim, H.J., Choi, S.M., Green, S., Tompsett, G.A., Lee, S.H., Huber, G.W., and Kim, W.B., Highly active and stable PtRuSn/C catalyst for electrooxidations of ethylene glycol and glycerol, Appl. Catal. B: Environ., 2011, vol. 101, p. 366.

    Article  CAS  Google Scholar 

  10. Livshits, V., Philosoph, M., and Peled, E., Direct ethylene glycol fuel-cell stack-study of oxidation intermediate products, J. Power Sources, 2008, vol. 178, p. 687.

    Article  CAS  Google Scholar 

  11. Gao, H., Zhai, C., Yuan, C., Liu, Z.Q., and Zhu, M., Snowflake-like Cu2S as visible-light-carrier for boosting Pd electrocatalytic ethylene glycol oxidation under visible light irradiation, Electrochim. Acta, 2020, vol. 330, p. 135214.

    Article  CAS  Google Scholar 

  12. Lin, Q., Wei, Y., Liu, W., Yu, Y., and Hu, J., Electrocatalytic oxidation of ethylene glycol and glycerol on nickel ion implanted-modified indium tin oxide electrode, Int. J. Hydrogen Energy, 2017, vol. 42, p. 1403.

    Article  CAS  Google Scholar 

  13. Jing Lv, J., Shan Li, S., Zheng, J.N., Wang, A.J., Chen, J.R., and Feng, J.J., Facile synthesis of reduced graphene oxide supported PtAg nanoflowers and their enhanced electrocatalytic activity, Int. J. Hydrogen Energy, 2014, vol. 39, p. 3211.

    Article  Google Scholar 

  14. Krittayavathananon, A. and Sawangphruk, M., Electrocatalytic oxidation of ethylene glycol on palladium coated on 3D reduced graphene oxide aerogel paper in alkali media: effects of carbon supports and hydrodynamic diffusion, Electrochim. Acta, 2016, vol. 212, p. 237.

    Article  CAS  Google Scholar 

  15. Fashedemi, O.O. and Ozoemena, K.I., Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C coreshell nanocatalysts, Electrochim. Acta, 2014, vol. 10, p. 279.

    Article  Google Scholar 

  16. Chen, S.S., Yang, Z.Z., Wang, A.J., Fang, K.M., and Feng, J.J., Facile synthesis of bimetallic gold palladium nanocrystals as effective and durable advanced catalysts for improved electrocatalytic performances of ethylene glycol and glycerol oxidation, J. Colloid Interface Sci., 2018, vol. 509, p. 7.

    Article  Google Scholar 

  17. Su, W., Sun, R., Ren, W., Yao, Y., Fei, Z., Wang, H., et al., Graphene supported palladium phosphorus nanoparticles as a promising catalyst for ethylene glycol oxidation, Appl. Surf. Sci., 2019, vol. 91, p. 735.

    Article  Google Scholar 

  18. Shi, Y.C., Feng, J.J., Lin, X.X., Zhang, L., Yuan, J., Zhang, Q.L., et al., One-step hydrothermal synthesis of three-dimensional nitrogen-doped reduced graphene oxide hydrogels anchored PtPd alloyed nanoparticles for ethylene glycol oxidation and hydrogen evolution reactions, Electrochim. Acta, 2019, vol. 293, p. 504.

    Article  CAS  Google Scholar 

  19. Duan, J.J., Zheng, X.X. Niu, H.J., Feng, J.J., Zhang, Q.L., Huang, H., and Wang, A.J., Porous dendritic PtRuPd nanospheres with enhanced catalytic activity and durability for ethylene glycol oxidation and oxygen reduction reactions, J. Colloid. Interface. Sci., 2020, vol. 560, p. 467.

    Article  CAS  PubMed  Google Scholar 

  20. Arul, P. and Abraham John, S., Electrodeposition of CuO from Cu-MOF on glassy carbon electrode: a non-enzymatic sensor for glucose, J. Electroanal. Chem., 2017, vol. 799, p. 61.

    Article  CAS  Google Scholar 

  21. Raoof, J.B., Rashid-Nadimi, S., and Ojani, R., Parametric study on electrochemical deposition of hair shaped PtRu as methanol oxidation catalyst, Int. J. Hydrogen Energy, 2013, vol. 38, p. 16062.

    Article  CAS  Google Scholar 

  22. Kumar, S., Pande, S., and Verma, P., Factor effecting electro-deposition process, Int. J. Curr. Eng. Technol., 2015, vol. 5, article 700.

  23. Papaderakis, A., Mintsouli, I., Georgieva, J., and Sotiropoulos, S., Electrocatalysts prepared by galvanic replacement, Catalysts, 2017, vol. 7, p. 80.

    Article  Google Scholar 

  24. Werbicki, J.J., Practical electroless and immersion plating, Plating, 1971, vol. 58, p. 763.

    CAS  Google Scholar 

  25. Wingenfeld, P., Advanced technology for selective plating of connectors, Met. Finish, 1994, vol. 92, p. 13.

    Google Scholar 

  26. Walsh, D.E., Milad, G., and Gudeczauskas, D., Final finish: printed circuit boards, Met. Finish, 2003, vol. 101, p. 25.

    Article  CAS  Google Scholar 

  27. Bliznakov, S., Vukmirovic, M., and Adzic, R., Electrochemical atomic-level controlled syntheses of electrocatalysts for the oxygen reduction reaction, RSC Catal. Ser., 2015, vol. 22, p. 144.

    Google Scholar 

  28. Zhang, J., Vukmirovic, M.B., Xu, Y., Mavrikakis, M., and Adzic, R.R., Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates, Angew. Chem. Int. Ed., 2005, vol. 44, p. 2132.

    Article  CAS  Google Scholar 

  29. Zhang, J., Vukmirovic, M.B., Sasaki, K., Nilekar, A.U., Mavrikakis, M., and Adzic, R.R., Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics, J. Am. Chem. Soc., 2005, vol. 127, p. 12480.

    Article  CAS  PubMed  Google Scholar 

  30. Shao, M., Sasaki, K., Marinkovic, N.S., Zhang, L., and Adzic, R.R., Synthesis and characterization of platinum monolayer oxygen–reduction electrocatalysts with Co–Pd core–shell nanoparticle supports, Electrochem. Commun., 2007, vol. 9, p. 2848.

    Article  CAS  Google Scholar 

  31. Mintsouli, I., Georgieva, J., Valova, E., Armyanov, S., Kakaroglou, A., Hubin, A., Steenhaut, O., Dille, J., Papaderakis, A., Kokkinidis, G., et al., Pt–Ni carbon-supported catalysts for methanol oxidation prepared by Ni electroless deposition and its galvanic replacement by Pt, J. Solid State Electrochem., 2013, vol. 17, p. 435.

    Article  CAS  Google Scholar 

  32. Zheng, F., Luk, S.Y., Kwong, T.L., and Yung, K.F., Synthesis of hollow PtAg alloy nanospheres with excellent electrocatalytic performances towards methanol and formic acid oxidations, RSC Adv., 2016, vol. 6, p. 44902.

    Article  CAS  Google Scholar 

  33. Li, C., Su, Y., Lv, X., Shi, H., Yang, X., and Wang, Y., Enhanced ethanol electrooxidation of hollow Pd nanospheres prepared by galvanic exchange reactions, Mater. Lett., 2012, vol. 69, p. 92.

    Article  CAS  Google Scholar 

  34. Rezaei, B., Mokhtarianpour, M., and Ensafi, A.A., Fabricated of bimetallic Pd/Pt nanostructure deposited on copper nanofoam substrate by galvanic replacement as an effective electrocatalyst for hydrogen evolution reaction, Int. J. Hydrogen Energy, 2015, vol. 40, p. 6754.

    Article  CAS  Google Scholar 

  35. Elbert, K., Hu, J., Ma, Z., Zhang, Y., Chen, G., An, W., Liu, P., Isaacs, H.S., Adzic, R.R., and Wang, J.X., Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized Pt shell thickness on the Ru core, A.C.S. Catal., 2015, vol. 5, p. 6764.

    Article  CAS  Google Scholar 

  36. Papaderakis, A., Pliatsikas, N., Prochaska, C., Vourlias, G., Patsalas, P., Tsiplakides, D., Balomenou, S., and Sotiropoulos, S., Oxygen evolution at IrO2 shell-Ir–Ni core electrodes prepared by galvanic replacement, J. Phys. Chem. C, 2016, vol. 120, p. 19995.

    Article  CAS  Google Scholar 

  37. Hosseini, M.G., Abdolmaleki, M., and Nasirpouri, F., Investigation of the porous nanostructured Cu/Ni/AuNi electrode for sodium borohydride electrooxidation, Electrochim. Acta, 2013, vol. 114, p. 215.

    Article  CAS  Google Scholar 

  38. Vanrenterghem, B., Papaderakis, A., Sotiropoulos, S., Tsiplakides, D., Balomenou, S., Bals, S., and Breugelmans, T., The reduction of benzylbromide at Ag–Ni deposits prepared by galvanic replacement, Electrochim. Acta, 2016, vol. 196, p. 756.

    Article  CAS  Google Scholar 

  39. Ahmadi Diva, A., Fathi, Sh., and Chekin, F., Determination of fluvoxamine in real samples using carbon paste electrode modified by electrodeposition of nickel, J. Anal. Chem., 2019, vol. 74, p. 809.

    Article  Google Scholar 

  40. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.

    Google Scholar 

  41. Kehoe, D.K. Romeral, L., Lundy, R., Morris, M.A., Lyons, M.G., and Gun’ko, Y.K., One Dimensional AuAg nanostructures as anodic catalysts in the ethylene glycol oxidation, Nanomaterials, 2020, vol. 10, p. 719.

    Article  CAS  Google Scholar 

  42. Rigsby, M.A., Spurlin, T.A., and Reid, J.D., The multi-functional role of boric acid in cobalt electrodeposition and superfill, J. Electrochem. Soc., 2020, vol. 167, p. 112507.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are sincerely thankful for the research facilities provided by the Ayatollah Amoli Branch of the Islamic Azad University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezoo Ghadi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Mirzaei, Ghadi, A. & Fathi, S. Preparation of a Modified Electrode Using Electrodeposition of Cu Followed by Galvanic Replacement of Ag: Application for Electrocatalytic Oxidation of Ethylen Glychol. Russ J Electrochem 58, 192–201 (2022). https://doi.org/10.1134/S1023193522030089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522030089

Keywords:

Navigation