Skip to main content
Log in

Modelling Electrocatalytic Reactions on Rotating Disk Electrodes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Kinetic currents caused by the interaction of dissolved catalyst and substrate are calculated. Sigmoidal dependence of currents on the bulk concentration of catalyst can be tested and the rate constant of redox reaction can be calculated by the proposed method. The applicability limits are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

DATA AVAILABILITY

All relevant data are available on demand.

REFERENCES

  1. Nicholson, R.S. and Shain, I., Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible and kinetic systems, Anal. Chem., 1964, vol. 36, p. 706.

    Article  CAS  Google Scholar 

  2. Saveant, J.M. and Vianello, E., Potential-sweep chronoamperometry: kinetic currents for first-order chemical reaction parallel to electron-transfer process (catalytic current), Electrochim. Acta, 1965, vol. 10, p. 905.

    Article  CAS  Google Scholar 

  3. Feldberg, S.W. and Campbell, J.F., The quasicatalytic mechanism: a variation of the catalytic (EC') mechanism, Anal. Chem., 2009, vol. 81, p. 8797.

    Article  CAS  Google Scholar 

  4. Compton, R.G., Fisher, A.C., and Spackman, R.A., Homogeneous catalysis of electrochemical reactions. Channel electrode voltammetry and EC' mechanism, Electroanalysis, 1992, vol. 4, p. 167.

    Article  CAS  Google Scholar 

  5. Molina, A., Analytical solution corresponding to the i/t response to a multipotential step for a catalytic mechanism, J. Electroanal. Chem., 1998, vol. 443, p. 163.

    Article  CAS  Google Scholar 

  6. Davčeva, M., Mirčeski, V., and Komorsky-Lovrić, Š., Evaluation of the antioxidative activity by measuring the rate of the homogeneous oxidation reaction with ferroceniumdimethanol cation. Comparative analysis of glutathione and ascorbic acid, Int. J. Electrochem. Sci., 2011, vol. 6, p. 2718.

    Google Scholar 

  7. Čižmek, L. and Lovrić, M., Simulation of electrocatalytic mechanism followed by chemical reaction, J. Electroanal. Chem., 2016, vol. 768, p. 129.

    Article  Google Scholar 

  8. Galvez, J., Molina, A., and Serna, C., Pulse polarography: part IX. A method of discriminationbetween the catalytic, CE, ECE and EC mechanism. Calculations of the rate constants of the chemical reaction for the catalytic, CE and ECE mechanism, J. Electroanal. Chem., 1981, vol. 124, p. 201.

    Article  CAS  Google Scholar 

  9. Senthamarai, R. and Rajendran, L., A comparison of diffusion-limited currents at microelectrodes of various geometries for EC' reactions, Electrochim. Acta, 2008, vol. 53, p. 3566.

    Article  CAS  Google Scholar 

  10. Zeng, J. and Osteryoung, R.A., Square wave voltammetry for a pseudo-first-order catalytic process, Anal. Chem., 1986, vol. 58, p. 2766.

    Article  CAS  Google Scholar 

  11. Andrieux, C.P., Dumas-Bouchiat, J.M., and Saveant, J.M., Catalysis of electrochemical reactions at derivatized electrodes. Kinetic model for stationary voltammetric techniques and preparative scale electrolysis, J. Electroanal. Chem., 1981, vol. 123, p. 171.

    Article  CAS  Google Scholar 

  12. Barker, P.D., Hill, H.A.O., and Walton, N.J., Fast second order electron transfer reactions coupled to redox protein electrochemistry. Experiment and digital simulation, J. Electroanal. Chem., 1989, vol. 260, p. 303.

    Article  CAS  Google Scholar 

  13. Gerbino, L., Baruzzi, A. M., and Iglesias, R.A., Catalytic EC' reaction at a thin film modified electrode, Electrochim. Acta, 2013, vol. 88, p. 66.

    Article  CAS  Google Scholar 

  14. Mirčeski, V. and Gulaboski, R., Surface catalytic mechanism in square wave voltammetry, Electroanalysis, 2001, vol. 13, p. 1326.

    Article  Google Scholar 

  15. Oyama, N., Sato, K., and Matsuda, H., Catalysis of electrode processes by octacyanomolibdenum(IV/V) complex bound electrostatically to graphite electrode coated with polyelectrolytes, J. Electroanal. Chem., 1980, vol. 115, p. 149.

    Article  CAS  Google Scholar 

  16. Karim-Nezhad, G., Hasanzadeh, M., Saghatforoush, L., Shadjou, N., Earshad, S., and Khalilzadeh, B., Kinetic study of electrocatalytic oxidation of carbohydrates on cobalt hydroxide modified glassy carbon electrode, J. Brazil. Chem. Soc., 2009, vol. 20, p. 141.

    Article  CAS  Google Scholar 

  17. Compton, R.G., Laing, M.E., Mason, D., Northing, R.J., and Unwin, P.R., Rotating disk electrodes: the theory of chronoamperometry and its use in mechanistic investigations, Proc. R. Soc. A, 1988, vol. 418, p. 113.

    CAS  Google Scholar 

  18. Saveant, J.M. and Vianello, E., Potential-sweep voltammetry: general theory of chemical polarization, Electrochim. Acta, 1967, vol. 12, p. 629.

    Article  CAS  Google Scholar 

  19. Ward, K.R., Lawrence, N.S., Hartshorne, R.S., and Compton, R.G., Cyclic voltammetry of the EC' mechanism at hemispherical particles and their arrays: the split wave, J. Phys. Chem. C, 2011, vol. 115, p. 11204.

    Article  CAS  Google Scholar 

  20. Molina, A., Serna, C., and Martinez-Ortiz, F., Square wave voltammetry for a pseudo-first-order catalytic process at spherical electrodes, J. Electroanal. Chem., 2000, vol. 486, p. 9.

    Article  CAS  Google Scholar 

  21. Molina, A., Gonzalez, J., Laborda, E., Wang, Y., and Compton, R.G., Analytical theory of the catalytic mechanism in square wave voltammetry at disc electrodes, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 16748.

    Article  CAS  Google Scholar 

  22. Gulaboski, R. and Mirčeski, V., New aspects of the electrochemical-catalytic (EC') mechanism in square wave voltammetry, Electrochim. Acta, 2015, vol. 167, p. 219.

    Article  CAS  Google Scholar 

  23. Gorton, L., Torstensson, A., Jaegfeldt, H., and Johansson, G., Electrocatalytic oxidation of reduced nicotinamide coenzymes by graphite electrodes modified with an adsorbed phenoxazinium salt, meldola blue, J. Electroanal. Chem., 1984, vol. 161, p. 103.

    Article  CAS  Google Scholar 

  24. Romero, M.R., Ahumada, F., Garay, F., and Baruzzi, A.M., Amperometric biosensor for direct blood lactate detection, Anal. Chem., 2010, vol. 82, p. 5568.

    Article  CAS  Google Scholar 

  25. Vorotyntsev, M.A., Konev, D.V., and Tolmachev, Y.V., Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC'' mechanism. Theory for stationary 1D regime, Electrochim. Acta, 2015, vol. 173, p. 779.

    Article  CAS  Google Scholar 

  26. Vorotyntsev, M.A. and Antipov, A.E., Reduction of bromate anion via autocatalytic redox-mediation by Br2/Br-redox couple. Theory for stationary 1D regime. Effect of different Nernst layer thickness for reactants, J. Electroanal. Chem., 2016, vol. 779, p. 146.

    Article  CAS  Google Scholar 

  27. Antipov, A.E. and Vorotyntsev, M.A., Maximum current density in the reduction of the bromate anion on a rotating disk electrode: asymptotic behaviour at large thickness of the diffusion layer, Russ. J. Electrochem., 2018, vol. 54, p. 186.

    Article  CAS  Google Scholar 

  28. Korotkova, E.I., Karbainov, Y.A., and Shevchuk, A.V., Study of antioxidant properties by voltammetry, J. Electroanal. Chem., 2002, vol. 518, p. 56.

    Article  CAS  Google Scholar 

  29. Korotkova, E.I., Karbainov, Y.A., and Avramchik, O.A., Investigation of antioxidant and catalytic properties of some biologically active substances by voltammetry, Anal. Bioanal. Chem., 2003, vol. 375, p. 465.

    Article  CAS  Google Scholar 

  30. Lowinsohn, D., Lee, P.T., and Compton, R.G., Towards detection of the total antioxidant concentrations of glutathione, cysteine, homocysteine and ascorbic acid using a nanocarbon paste electrode, Int. J. Electrochem. Sci., 2014, vol. 9, p. 3458.

    Google Scholar 

  31. Compton, R.G., Day, M.J., Laing, M.E., Northing, R.J., Penman, J.I., and Waller, A.M., Rotating-disc electrode voltammetry. The catalytic mechanism (EC') and its nuances, J. Chem. Soc. Faraday Trans. 1, 1988, vol. 84, p. 2013.

    Article  CAS  Google Scholar 

  32. Andrieux, C.P., Dumas-Bouchiat, J.M., and Saveant, J.M., Catalysis of electrochemical reactions at redox polymer electrodes: effect of the film thickness, J. Electroanal. Chem., 1980, vol. 114, p. 159.

    Article  CAS  Google Scholar 

  33. Koutecky, J. and Levich, V.G., The use of a rotating disk electrode in the studies of electrochemical kinetics and electrolytic processes, Zh. Fiz. Khim., 1956, vol. 32, p. 1565.

    Google Scholar 

  34. Treimer, S., Tang, A., and Johnson, D.C., A consideration of the application of Koutecky–Levich plots in the diagnoses of charge-transfer mechanism at rotating disk electrodes, Electroanalysis, 2002, vol. 14, p. 165.

    Article  CAS  Google Scholar 

  35. Strutwolf, J. and Schoeller, W.W., Linear and cyclic sweep voltammetry at a rotating disk electrode. A digital simulation, Electroanalysis, 1996, vol. 8, p. 1034.

    Article  CAS  Google Scholar 

  36. Hale, J.M., Transients in convective systems: I. Theory of galvanostatic, and galvanostatic with current reversal transients, at a rotating disk electrode, J. Electroanal. Chem., 1963, vol. 6, p. 187.

    CAS  Google Scholar 

  37. Hale, J.M., Transients in convective systems: II. Limiting current and kinetically complicated galvanostatic transients at a rotating disc electrodes, J. Electroanal. Chem., 1964, vol. 8, p. 332.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milivoj Lovrić.

Ethics declarations

The author declares no conflict of interest.

Additional information

Dedicated to the memory of Dr. Šebojka Komorsky-Lovrić

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milivoj Lovrić Modelling Electrocatalytic Reactions on Rotating Disk Electrodes. Russ J Electrochem 58, 202–209 (2022). https://doi.org/10.1134/S1023193522030077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522030077

Keywords:

Navigation