Skip to main content
Log in

Increasing the Electrochemical Activity of the Pr1.95La0.05CuO4 Cathode by Laser Modification of the Electrode/Electrolyte Interface Profile

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of the Ce0.9Gd0.1O1.95 solid electrolyte surface topology formed by laser processing on the electrochemical activity of the Pr1.95La0.05CuO4 cathode material in oxygen reduction reaction is studied. The ordered columnar structure of Ce0.9Gd0.1O1.95 with a depth of the relief profile of ~11–12 µm is shown to be the most preferable with respect to the achieving of higher electrochemical activity. A twofold decrease in the polarization resistance of the Pr1.95La0.05CuO4 cathode material from 0.87 Ω cm2 (the initial sample) to 0.40 Ω cm2 (the modified Ce0.9Gd0.1O1.95 surface) at a temperature of 700°C in air was observed upon the transition from the Ce0.9Gd0.1O1.95 solid electrolyte initial surface to the modified one. Based on the data obtained, the application of the laser processing for the formation of a preset topology of the electrode/electrolyte interface can be considered as an effective technological approach that allows increasing the electrochemical performance of solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Cassidy, M., Trends in the processing and manufacture of solid oxide fuel cells, Wiley Interdiscip. Rev.: Energy Environ., 2017, vol. 6, p. e248.

    Google Scholar 

  2. Gao, Z., Mogni, L.V., Miller, E.C., Railsback, J.G., and Barnett, S., A perspective on low-temperature solid oxide fuel cells, Energy Environ. Sci., 2016, vol. 9, p. 1602.

    Article  CAS  Google Scholar 

  3. Kilner, J.A. and Burriel, M., Materials for intermediate-temperature solid-oxide fuel cells, Annu. Rev. Mater. Res., 2014, vol. 44, p. 365.

    Article  CAS  Google Scholar 

  4. Nédélec, R., Uhlenbruck, S., Sebold, D., Haanappel, V.A.C., Buchkremer, H.P., and Stöver, D., Dense yttria-stabilised zirconia electrolyte layers for SOFC by reactive magnetron sputtering, J. Power Sources, 2012, vol. 205, p. 157.

    Article  Google Scholar 

  5. Solovyev, A.A., Shipilova, A.V., Ionov, I.V., Kovalchuk, A.N., Rabotkin, S.V., and Oskirko, V.O., Magnetron-sputtered YSZ and CGO electrolytes for SOFC, J. Electron. Mater., 2016, vol. 45, p. 3921.

    Article  CAS  Google Scholar 

  6. Sønderby, S., Christensen, B.H., Almtoft, K.P., Nielsen, L.P., and Eklund, P., Industrial-scale high power impulse magnetron sputtering of yttria-stabilized zirconia on porous NiO/YSZ fuel cell anodes, Surf. Coat. Technol., 2015, vol. 281, p. 150.

    Article  Google Scholar 

  7. Hidalgo, H., Reguzina, E., Millon, E., Thomann, A.L., Mathias, J., Boulmer-Leborgne, C., Sauvage, T., and Brault, P., Yttria-stabilized zirconia thin films deposited by pulsed-laser deposition and magnetron sputtering, Surf. Coat. Technol., 2011, vol. 205, p. 4495.

    Article  CAS  Google Scholar 

  8. Connor, P.A., Yue, X., Savaniu, C.D., Price, R., Triantafyllou, G., Cassidy, M., Kerherve, G., Payne, D.J., Maher, R.C., Cohen, L.F., Tomov, R.I., Glowacki, B.A., Kumar, R.V., and Irvine J.T.S., Tailoring SOFC electrode microstructures for improved performance, Adv. Energy Mater., 2018, vol. 8, p. 1800120.

    Article  Google Scholar 

  9. Sreedhar, I., Agarwal, B., Goyal, P., and Singh, S.A., Recent advances in material and performance aspects of solid oxide fuel cells, J. Electroanal. Chem., 2019, vol. 848, p. 113315.

    Article  CAS  Google Scholar 

  10. Esquirol, A., Brandon, N.P., Kilner, J.A., and Mogensen, M., Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate-temperature SOFCs, J. Electrochem. Soc., 2004, vol. 151, p. A1847.

    Article  CAS  Google Scholar 

  11. Chen, D.J., Ran, R., Zhang, K., Wang, J., and Shao, Z.P., Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5 + δ cathode on samarium-doped ceria electrolyte, J. Power Sources, 2009, vol. 188, p. 96.

    Article  CAS  Google Scholar 

  12. Pelosato, R., Cordaro, G., Stucchi, D., Cristiani, C., and Dotelli, G., Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review, J. Power Sources, 2015, vol. 298, p. 46.

    Article  CAS  Google Scholar 

  13. Philippeau, B., Mauvy, F., Mazataud, C., Fourcade, S., and Grenier, J.C., Comparative study of electrochemical properties of mixed conducting Ln2NiO4 + δ (Ln = La, Pr and Nd) and La0.6Sr0.4Fe0.8Co0.2O3 – δ as SOFC cathodes associated to Ce0.9Gd0.1O2 – δ, La0.8Sr0.2Ga0.8Mg0.2O3 – δ and La9SrSi6O26.5 electrolytes, Solid State Ionics, 2013, vol. 249, p. 17.

    Article  Google Scholar 

  14. Nomura, T., Nishimoto, S., Kameshima, Y., and Miyake, M., Electrode properties of doped Pr2NiO4-based oxide cathode for intermediate-temperature SOFCs, J. Ceram. Soc. Jpn., 2012, vol. 120, p. 534.

    Article  CAS  Google Scholar 

  15. Lyskov, N.V., Kaluzhskikh, M.S., Leonova, L.S., Mazo, G.N., Istomin, S.Ya., and Antipov, E.V., Electrochemical characterization of Pr2CuO4 cathode for IT-SOFC, Int. J. Hydrogen Energy, 2012, vol. 37, p. 18357.

    Article  CAS  Google Scholar 

  16. Kolchina, L.M., Lyskov, N.V., Kuznetsov, A.N., Kazakov, S.M., Galin, M.Z., Meledin, A., Abakumov, A.M., Bredikhin, S.I., Mazo, G.N., and Antipov, E.V., Evaluation of Ce-doped Pr2CuO4 for potential application as a cathode material for solid oxide fuel cells, RSC Adv., 2016, vol. 6, p. 101029.

    Article  CAS  Google Scholar 

  17. Kolchina, L.M., Lyskov, N.V., Kazakov, S.M., Mazo, G.N., and Antipov, E.V., Drastic change of electrical conductivity in Pr2CuO4 by isovalent La doping, RSC Adv., 2015, vol. 5, p. 91993.

    Article  CAS  Google Scholar 

  18. Wang, W.G. and Mogensen, M., High-performance lanthanum-ferrite-based cathode for SOFC, Solid State Ionics, 2005, vol. 176, p. 457.

    Article  CAS  Google Scholar 

  19. Dusastre, V. and Kilner, J.A., Optimization of composite cathodes for intermediate temperature SOFC applications, Solid State Ionics, 1999, vol. 126, p. 163.

    Article  CAS  Google Scholar 

  20. Murray, E.P., Sever, M.J., and Barnett, S.A., Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes, Solid State Ionics, 2002, vol. 148, p. 27.

    Article  Google Scholar 

  21. Leng, Y., Chan, S. H., and Liu, Q., Development of LSCF–GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte, Int. J. Hydrogen Energy, 2008, vol. 33, p. 3808.

    Article  CAS  Google Scholar 

  22. Kolchina, L.M., Lyskov, N.V., Petukhov, D.I., and Mazo, G.N., Electrochemical characterization of Pr2CuO4–Ce0.9Gd0.1O1.95 composite cathodes for solid oxide fuel cells, J. Alloys Compd., 2014, vol. 605, p. 89.

    Article  CAS  Google Scholar 

  23. Lyskov, N.V., Kolchina, L.M., Galin, M.Z., and Mazo, G.N., Development of lanthanum-doped praseodymium cuprates as cathode materials for intermediate-temperature solid oxide fuel cells, Solid State Ionics, 2018, vol. 319, p. 156.

    Article  CAS  Google Scholar 

  24. Ding, D., Li, X., Lai, S.Y., Gerdes, K., and Liu, M., Enhancing SOFC cathode performance by surface modification through infiltration, Energy Environ. Sci., 2014, vol. 7, p. 552.

    Article  CAS  Google Scholar 

  25. Yoon, K. J., Biswas, M., Kim, H., Park, M., Hong, J., Kim, H., Son, J., Lee, J., Kim, B., and Lee, H., Nano-tailoring of infiltrated catalysts for high-temperature solid oxide regenerative fuel cells, Nano Energy, 2017, vol. 36, p. 9.

    Article  CAS  Google Scholar 

  26. Cai, G., Zhang, Y., Dai, H., He, S., Ge, L., Chen, H., and Guo, L., Modification of electrode/electrolyte interface by laser micro-processing for solid oxide fuel cell, Mater. Lett., 2017, vol. 195, p. 232.

    Article  CAS  Google Scholar 

  27. Cebollero, J.A., Laguna-Bercero, M.A., Lahoz, R., Silva, J., Moreno, R., and Larrea, A., Optimization of laser-patterned YSZ–LSM composite cathode-electrolyte interfaces for solid oxide fuel cells, J. Eur. Ceram. Soc., 2019, vol. 39, p. 3466.

    Article  CAS  Google Scholar 

  28. Hayashi, H., Kanoh, M., Quan, C.J., Inaba, H., Wang, S., Dokiya, M., and Tagawa, H., Thermal expansion of Gd-doped ceria and reduced ceria, Solid State Ionics, 2000, vol. 132, p. 227.

    Article  CAS  Google Scholar 

Download references

Funding

The work is financially supported in part by the RFBR (project no. 20-08-00454). The materials are synthesized in accordance with the State Contract of the Institute of Problems of Chemical Physics, Russian Academy of Sciences, no. 0089-2019-0007 (the State Reg. no. АААА-А19-119061890019-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Lyskov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Published based on the materials of the VII All-Russian Conference with International Participation “Fuel Cells and Power Plants Based on Them”, Chernogolovka, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyskov, N.V., Galin, M.Z., Napol’skii, P.S. et al. Increasing the Electrochemical Activity of the Pr1.95La0.05CuO4 Cathode by Laser Modification of the Electrode/Electrolyte Interface Profile. Russ J Electrochem 58, 93–99 (2022). https://doi.org/10.1134/S1023193522020070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522020070

Keywords:

Navigation