Skip to main content
Log in

Bimetallic Alkoxocomplexes of Rhenium, Cobalt, and Nickel as Precursors for Alloys Production

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Rhenium alkoxocomplexes (Re4O6(OMe)12) and Re4O6(OPri)10) were obtained by the anodic dissolution of rhenium. The complexes were studied using the IR spectrometry and Energy Dispersive Analysis. Bimetallic rheniumnickel alkoxocomplexes (Re4 – xNixO6(OMe)12, Re4 – xNixO6(OPri)10) and rhenium–cobalt alkoxocomplexes (Re4 – xCoxO6(OMe)12, Re4 – xCoxO6(OPri)10) were synthesized of monometallic alkoxocomplexes and characterized using the IR spectrometry. It is shown that homogeneous bimetallic powder of Re0.79Ni0.21 alloy can be produced of rheniumnickel methylate and isopropylate and the powder of Re0.67Co0.33 alloy, of rhenium–cobalt methylate using the reduction in the hydrogen atmosphere at a temperature of 650°C and a pressure of 5 atm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Palant, A.A., Troshkina, I.D., Chekmarev, A.M., and Kostylev, A.I., Rhenium Technology, Moscow: Galleya-Print, 2015.

    Google Scholar 

  2. Korovin, S.S., Bukin, V.I., Fedorov, P.I., and Reznik, A.M., Rare and Dispersed Elements. Chemistry and Technology (Textbook for Universities), Moscow: MISIS, 2003, vol. 3.

  3. Wrona, A., Staszewski, M., Czepelak, M., Woch, M., Kamińska, M., Osadnik, M., and Kołacz, D., Properties of rhenium-based master alloys prepared by powder metallurgy techniques, Arch. Mater. Sci. Eng., 2010, vol. 45, no. 2, p. 95.

    Google Scholar 

  4. Rhenium: Properties, Uses and Occurrence, James, E., Ed., Nova Sci. Publ., 2017.

    Google Scholar 

  5. Maisel, S.B., Schindzielorz, N., Mottura, A., Reed, R.C., and Muller, S., Nickel–rhenium compound sheds light on the potency of rhenium as a strengthener in high-temperature nickel alloys, Phys. Rev. B, 2014, vol. 90, 094110. https://doi.org/10.1103/PhysRevB.90.094110

    Article  CAS  Google Scholar 

  6. Mottura, A. and Reed, R.C., What is the role of rhenium in single crystal superalloys? MATEC Web of Conferences, New York, 2014, vol. 14, p. 1–6. https://doi.org/10.1051/matecconf/20141401001

  7. Huang, M. and Zhu, J., An overview of rhenium effect in single-crystal superalloys, Rare Met., 2016, vol. 35, p. 127. https://doi.org/10.1007/s12598-015-0597-z

    Article  CAS  Google Scholar 

  8. John, D.A., Seal, R.R., II, and Polyak, D.E., 2017, Rhenium, ch. P of Critical Mineral Resources of the United States–Economic and Environmental Geology and Prospects for Future Supply, Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., Eds., US Geolog. Survey Professional Paper, 2017, vol. 1802, p. P1–P49. https://doi.org/10.3133/p.p1802P

  9. Schulz, K.J., DeYoung, J.H., Jr., Bradley, D.C., and Seal, R.R., II, Critical mineral resources of the United States–An introduction, ch. A of Critical Mineral Resources of the United States–Economic and Environmental Geology and Prospects for Future Supply, Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., Eds., US Geolog. Survey Professional Paper, 2017, vol. 1802, p. A1–A14. https://doi.org/10.3133/pp1802A

  10. Drobot, D.V. and Kulikova, E.S., Dvi-manganese– Rhenium is the youngest stable element of the Periodic Table, Fine Chem. Technol., 2019, vol. 14, no. 6, p. 17. https://doi.org/10.32362/2410-6593-2019-14-6-17-21

    Article  CAS  Google Scholar 

  11. Efanova, E.P., Rhenium—metal of the high-tech industry, Foreign Commercial Information Bulletin, 2016, no. 1, p. 35.

  12. Zientek, M.L., Loferski, P.J., Parks, H.L., Schulte, R.F., and Seal, R.R., II, Platinum-Group Elements, ch. N of Critical Mineral Resources of the United States–Economic and Environmental Geology and Prospects for Future Supply, Schulz, K.J., DeYoung, J.H. Jr., Seal, R.R., II, and Bradley, D.C., Eds., US Geolog. Survey Professional Paper, 2017, vol. 1802, p. N1–N91. https://doi.org/10.3133/pp1802N

  13. John, D., Rhenium–A rare metal critical to modern transportation, US Geolog. Survey Fact Sheet, 2014–3101, 2 p. https://doi.org/10.3133/fs20143101

  14. Mehrotra, R.C., Transition-metal alkoxides, Adv. Inorg. Chem., 1983, vol. 326, p. 269–335. https://doi.org/10.1016/s0898-8838(08)60096-3

    Article  Google Scholar 

  15. Kessler, V.G. Alkoxides and alkoxosynthesis, in Comprehensive Inorganic Chemistry II (From Elements to Applications), Reedijk J. and Kenneth Poeppelmeier K., Eds., Elsevier, 2013, vol. 2, ch. 2.16, p. 455. https://doi.org/10.1016/B978-0-08-097774-4.00220-5

  16. Zhao, J., Liu, Y., Fan, M., Long, Y., and Zou, X., From solid-state metal alkoxides to nanostructured oxides: a precursor-directed synthetic route to functional inorganic nanomaterials, ChemInform. vol. 46, no. 18. https://doi.org/10.1002/chin.201518261

  17. Kessler, V.G., The synthesis and solution stability of alkoxide precursors, in Handbook of SolGel Science and Technology, Klein, L., Aparicio, M., and Jitianu, A., Eds., Springer, Cham., p. 31–80. https://doi.org/10.1007/978-3-319-32101-1_1

  18. Mishra, S. and Daniele, S., Molecular engineering of metal alkoxides for solution phase synthesis of high-tech metal oxide nanomaterials, J. Chem. Eur., 2020, vol. 26, p. 9292. https://doi.org/10.1002/chem.202000534

    Article  CAS  Google Scholar 

  19. Xie, S., Gou, J., Liu, B., and Liu, C. Facile preparation of hexagonal cobalt alkoxide for supercapacitor application, Mater. Sci., Energy Technology and Power Engineering III (Mep 2019), 2019, vol. 2154, no. 1. 020066. https://doi.org/10.1063/1.5125394

  20. Pryamilova, E.N., Chernyshova, O.V., and Drobot, D.V., Rhenium anodic dissolution in water-free methanol at different electrochemical parameters, Fine Chem. Technolog., 2012, vol. 7, no. 4, p. 75.

    Google Scholar 

  21. Shcheglov, P.A. and Drobot, D.V., Rhenium alkoxides, Russ. Chem. Bull., 2005, vol. 54, no. 10, p. 2247. https://doi.org/10.1007/s11172-006-0106-5

  22. Petrakova, O.V., Drobot, D.V., and Scheglov, P.A., Synthesis and properties of rhenium complex with n-butanol and i-butanol, Fine Chem. Technolog., 2009, vol. 4, no. 5, p. 97.

    Google Scholar 

  23. Mazilin, I.V. and Drobot, D.V., Properties of rhenium, nickel, cobalt alkoxides and their decomposition products, Fine Chem. Technolog., 2013, vol. 8, no. 3, p. 29.

    CAS  Google Scholar 

  24. Shcheglov, P.A., Drobot, D.V., Seisenbaeva, G.A., and Kessler, V.G., The electrochemical synthesis and X-ray single crystal of Re4O6(OiPr)10 – a new rhenium(V,VI) cluster with an unprecendented arrangement of metal–metal bonds, Inorg. Chem. Commun., 2001, vol. 4, no. 5, p. 227. https://doi.org/10.1016/s1387-7003(01)00154-x

    Article  CAS  Google Scholar 

  25. Seisenbaeva, G.A., Shevelkov, A.V., Tegenfeldt, J., Kloo, L., Drobot, D.V., and Kessler, V.G., Homo- and hetero-metallic rhenium oxomethoxide complexes with a M4(μ-O)2(μ-OMe)4 planar core—a new family of metal alkoxides displaying a peculiar structural disorder. Preparation and X-ray single crystal study, J. Chem. Soc., Dalton Trans., 2001, no. 19. p. 2762. https://doi.org/10.1039/b103287a

  26. Nikonova, O.A., Kessler, V.G., and Seisenbaeva, G.A., Substitution features in the isomorphous replacement series for metal-organic compounds (NbxTa1 ‒ x)4O2(OMe)14(ReO4)2, x = 0.7, 0.5, 0.3 – Single-source precursors of complex oxides with organized porosity, J. Solid State Chem., 2008, vol. 181, p. 3294. https://doi.org/10.1016/j.jssc.2008.09.003

    Article  CAS  Google Scholar 

  27. Kessler, V.G., Seisenbaeva, G.A., Shevelkov, A.V., and Khvorykh, G.V., Synthesis, crystal, molecular and electronic structure of a novel heterobinuclear alkoxide cluster [(MeO)2ReO(μ-OMe)3MoO(OMe)2], J. Chem. Soc., Chem. Commun., 1995, no. 17, p. 1779. https://doi.org/10.1039/C39950001779

  28. Patnaik, P., A Comprehensive Guide to the Hazardous Properties of Chemical Substances, Canada: Wiley, 2007, p. 598–601. https://doi.org/10.1002/9780470134955.ch31

  29. Rossetti, M.N., Dutta, P.S., Lewis, S.L., Litz, E., Jordan, M., and Vreeland, J.L., Metal alkoxides, apparatus for manufacturing metal alkoxides, related methods and uses thereof, US Patent 9028768B2, 2015.

  30. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, 2006.

    Google Scholar 

  31. Hajba, L., Mink, J., KuËhn, F.E., and Goncëalves, I.S., Raman and infrared spectroscopic and theoretical studies of dinuclear rhenium and osmium complexes, M2(O2CCH3)4X2 (M = Re, Os; X = Cl, Br), Inorgan. Chim. Acta, 2006, vol. 359, p. 4741.

    Article  CAS  Google Scholar 

  32. Yukhnevich, G.V., Infrakrasnaya spektroskopiya vody (Infrared Spectroscopy of Water), Moscow: Nauka, 1973.

  33. Kozlova, N.I., Kessler, V.G., Turova, N.Ya., and Belokon’, A.I., Mass spectrometric and IR spectral study of molybdenum(VI) alcoholates. Polymerization of alcoholates, Coord. Chem., 1989, vol. 15, no. 11, p. 1524.

    CAS  Google Scholar 

  34. Edwards, P.G., Wilkinson, G., Hursthouse, M.B., and Malik, K.M.A., Improved syntheses of tetrachloro-oxorhenium(VI) and chlorotrioxorhenium(VII). Synthesis of alkoxo- and dialkylamido-rhenium compounds. The crystal and molecular structures of di-μ-methoxo-tetramethoxo-μ-oxo-dioxorhenium(VI) (Re–Re), bis[lithium pentaisopropoxo-oxorhenate(VI)–lithiumchloride–tetrahydrofuran(1/1/2)], and trans-tetraphenoxobis(trimethylphosphine)rhenium(IV), J. Chem. Soc., Dalton Trans, 1980, no. 12, p. 2467. https://doi.org/10.1039/DT9800002467

  35. Kessler, V.G., Shevel’kov, A.V., Khvorykh, G.V., Seisenbaeva, G.A., Turova, N.Ya., and Drobot, D.V., Electrochemical synthesis and physicochemical properties of rhenium(V) oxomethylate Re4O2(OMe)16, J. Inorgan. Chem., 1995, vol. 40, no. 9, p. 1477.

    CAS  Google Scholar 

  36. Chadha, S.L. and Sharma, V., Alcoholysis of nickel(II) methoxide: Synthesis and characterization of Ni(OCH3)(OCH2CC13), Inorg. Chim. Acta, 1986, vol. 118, no. 2, p. 43.

    Article  Google Scholar 

  37. Slabzhennikov, S.N., Ryabchenko, O.B., and Kuarton L.A., Distinctive and regular features of the IR spectra of transition metal tris(acetylacetonates), Russ. J. Coord. Chem., 2008, vol. 34, no. 7, p. 551. https://doi.org/10.1134/s1070328408070130

    Article  CAS  Google Scholar 

  38. Nakamoto, K., McCarthy, P.J., and Martell, A.E., Infrared spectra of metal chelate compounds. III Infrared spectra of acetylacetonates of divalent metals, J. Am. Chem. Soc., 1961, vol. 83, no. 6, p. 1272.

    Article  CAS  Google Scholar 

  39. Yiase, S.G., Adejo, S.O., and Iningev, S.T., Manganese(II) and cobalt(II) acetylacetonates as antimicrobial agents, Nigerian Ann. Pure and Appl. Sci., 2018, vol. 1, p. 176. https://doi.org/10.46912/napas.43

    Article  Google Scholar 

  40. Prigent, J. and Joubert, J.-M., The phase diagrams of the ternary systems La–Ni–M (M = Re, Ru, Os, Rh, Ir, Pd, Ag, Au) in the La-poor region, Intermetallics, 2011, vol. 19, no. 3, p. 295. https://doi.org/10.1016/j.intermet.2010.10.016

    Article  CAS  Google Scholar 

  41. Shubin, Y.V., Filatov, E.Y., Baidina, I.A., Yusenko, K.V., Zadesenetz, A.V., and Korenev, S.V., Synthesis of [M(NH3)5Cl](ReO4)2 (M = Cr, Co, Ru, Rh, Ir) and investigation of thermolysis products. Crystal structure of [Rh(NH3)5Cl](ReO4)2, J. Struct. Chem., 2006, vol. 47, no. 6, p. 1103. https://doi.org/10.1007/s10947-006-0432-3

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the MIREA project NICh ICMR 21/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Kulikova.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Translated by T. Kabanova

Published based on the materials of the VII All-Russian Conference with International Participation “Fuel Cells and Power Plants Based on Them”, Chernogolovka, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, E.S., Chernyshova, O.V., Iordan, D.V. et al. Bimetallic Alkoxocomplexes of Rhenium, Cobalt, and Nickel as Precursors for Alloys Production. Russ J Electrochem 58, 131–135 (2022). https://doi.org/10.1134/S1023193522020057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522020057

Keywords

Navigation