Skip to main content
Log in

Solid-State Synthesis of SnO2–Zn2SnO4 Nanocomposite and Its Application for Electrochemical Detection of Cabergoline as Dopamine Receptor Antagonists

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In the present work, the synthesis of SnO2–Zn2SnO4 nanocomposite was fulfilled according to solid-state technique followed by calcination. The SnO2–Zn2SnO4 nanocomposites were specified by X-ray diffraction and scanning electron microscopy. Then, oxidation response of cabergoline (Cab) was investigated on the surface of SnO2–Zn2SnO4 modified carbon paste electrode (SnO2–Zn2SnO4/CPE), exhibiting a well-defined single oxidation peak at +0.84 V vs. Ag/AgCl, NaCl (3 M) in an irreversible process. In oxidation reaction of Cab, equal number of protons and electrons are participated and the oxidation reaction rate is controlled by an adsorption step. The calibration curve from differential pulse voltammetry showed linearity in the concentration range of 3.0 to 155.0 µM (R2 = 0.9936) and detection limit was calculated to be 0.01 µM. The analysis results certified that SnO2–Zn2SnO4/CPE possess considerable potential to detect Cab in biological fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Chiba, S., Numakawa, T., Ninomiya, M., Yoon, H.S., and Kunugi, H., Cabergoline, a dopamine receptor agonist, has an antidepressant-like property and enhances brain-derived neurotrophic factor signaling, Psychopharmacology, 2010, vol. 211, p. 291.

    Article  CAS  Google Scholar 

  2. Pontikides, N., Krassas, G., Nikopoulou, E., and Kaltsas, T., Cabergoline as a first-line treatment in newly diagnosed macroprolactinomas, Pituitary, 2000, vol. 2, p. 277.

    Article  CAS  Google Scholar 

  3. Takahashi, H., Yoshida, K., Higuchi, H., Shimizu, T., Inoue, T., and Koyama, T., Addition of a dopamine agonist, cabergoline, to a serotonin-noradrenalin reuptake inhibitor, milnacipran as a therapeutic option in the treatment of refractory depression: two case reports, Clin. Neuropharmacol., 2003, vol. 26, p. 230.

    Article  CAS  Google Scholar 

  4. Önal, A., Sağırlı, O., and Şensoy, D., Selective LC determination of cabergoline in the bulk drug and in tablets: in vitro dissolution studies, Chromatographia, 2007, vol. 65, p. 561.

    Article  Google Scholar 

  5. Igarashi, K., Hotta, K., Kasuya, F., Abe, K., and Sakoda, S., Determination of cabergoline and L-dopa in human plasma using liquid chromatography-tandem mass spectrometry, J. Chromatogr. B, 2003, vol. 792, p. 55.

    Article  CAS  Google Scholar 

  6. Salman, D., Dogan, A., and Basci, N.E., Spectrophotometric analysis of cabergoline in pharmaceutical preparations, Lat. Am. J. Pharm., 2011, vol. 30, p. 304.

    CAS  Google Scholar 

  7. Pianezzola, E., Bellotti, V., La Croix, R., and Benedetti, M.S., Determination of cabergoline in plasma and urine by high-performance liquid chromatography with electrochemical detection, J. Chromatogr. B, 1992, vol. 574, p. 170.

    Article  CAS  Google Scholar 

  8. Tajik, S., Taher, M.A., and Beitollahi, H., First report for electrochemical determination of levodopa and cabergoline: application for determination of levodopa and cabergoline in human serum, urine and pharmaceutical formulations, Electroanalysis, 2014, vol. 26, p. 796.

    Article  CAS  Google Scholar 

  9. Jain, R. and Sinha, A., A graphene based sensor for sensitive voltammetric quantification of cabergoline, J. Electrochem. Soc., 2014, vol. 161, p. H314.

    Article  CAS  Google Scholar 

  10. Fathi, S., Omrani, S.G., and Zamani, S., Simple and low-cost electrochemical sensor based on nickel nanoparticles for the determination of cabergoline, J. Anal. Chem., 2016, vol. 71, p. 269.

    Article  CAS  Google Scholar 

  11. Ensafi, A.A., Taei, M., Khayamian, T., and Hasanpour, F., Simultaneous voltammetric determination of enrofloxacin and ciprofloxacin in urine and plasma using multiwall carbon nanotubes modified glassy carbon electrode by least-squares support vector machines, Anal. Sci., 2010, vol. 26, p. 803.

    Article  CAS  Google Scholar 

  12. Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2‑(4-oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N′-phenyl- hydrazinecarbothioamide, Anal. Chem., 2008, vol. 80, p. 9848.

    Article  CAS  Google Scholar 

  13. Fouladgar, M., CuO–CNT nanocomposite/ionic liquid modified sensor as new breast anticancer approach for determination of doxorubicin and 5-fluorouracil drugs, J. Electrochem. Soc., 2018, vol. 165, p. B559.

    Article  CAS  Google Scholar 

  14. Fouladgar, M. and Karimi-Maleh, H., Ionic liquid/multiwall carbon nanotubes paste electrode for square wave voltammetric determination of methyldopa, Ionics, 2013, vol. 19, p. 1163.

    Article  CAS  Google Scholar 

  15. Negahban, S., Fouladgar, M., and Amiri, G., Improve the performance of carbon paste electrodes for determination of dobutamine using MnZnFe2O4 nanoparticles and ionic liquid, J. Taiwan Inst. Chem. Eng., 2017, vol. 78, p. 51.

    Article  CAS  Google Scholar 

  16. Fouladgar, M., A high sensitive square wave voltammetric sensor based on ZnO nanoparticle ionic liquid paste electrode for determination of benserazide in biological samples, Measurement, 2016, vol. 86, p. 141.

    Article  Google Scholar 

  17. Pournaghi-Azar, M. and Saadatirad, A., Simultaneous voltammetric and amperometric determination of morphine and codeine using a chemically modified-palladized aluminum electrode, J. Electroanal. Chem., 2008, vol. 624, p. 293.

    Article  CAS  Google Scholar 

  18. Ensafi, A.A., Heydari-Bafrooei, E., and Rezaei, B., Different interaction of codeine and morphine with DNA: a concept for simultaneous determination, Biosens. Bioelectron., 2013, vol. 41, p. 627.

    Article  CAS  Google Scholar 

  19. Firooz, A.A., Mahjoub, A.R., and Khodadadi, A.A., Effects of flower-like, sheet-like and granular SnO2 nanostructures prepared by solid-state reactions on CO sensing, Mater. Chem. Phys., 2009, vol. 115, p. 196.

    Article  CAS  Google Scholar 

  20. Ensafi, A.A., Arashpour, B., Rezaei, B., and Allafchian, A.R., Voltammetric behavior of dopamine at a glassy carbon electrode modified with NiFe2O4 magnetic nanoparticles decorated with multiwall carbon nanotubes, Mater. Sci. Eng. C, 2014, vol. 39, p. 78.

    Article  CAS  Google Scholar 

  21. Ayeshamariam, A., Ramalingam, S., Bououdina, M., and Jayachandran, M., Preparation and characterizations of SnO2 nanopowder and spectroscopic (FT-IR, FT-Raman, UV–Visible and NMR) analysis using HF and DFT calculations, Spectrochim. Acta A, 2014, vol. 118, p. 1135.

    Article  CAS  Google Scholar 

  22. Taei, M., Hasanpour, F., Hajhashemi, V., Movahedi, M., and Baghlani, H., Simultaneous detection of morphine and codeine in urine samples of heroin addicts using multi-walled carbon nanotubes modified SnO2–Zn2SnO4 nanocomposites paste electrode, Appl. Surf. Sci., 2016, vol. 363, p. 490.

    Article  CAS  Google Scholar 

  23. Lu, Z. and Tang, Y., Two-step synthesis and ethanol sensing properties of Zn2SnO4SnO2 nanocomposites, Mater. Chem. Phys., 2005, vol. 92, p. 5.

    Article  CAS  Google Scholar 

  24. Fouladgar, M. and Mohammadzadeh, S., Determination of methimazole on a multiwall carbon nanotube titanium dioxide nanoparticle paste electrode, Anal. Lett., 2014, vol. 47, p. 763.

    Article  CAS  Google Scholar 

  25. Moon, W.J., Yu, J.H., and Choi, G.M., Selective CO gas detection of SnO2–Zn2SnO4 composite gas sensor, Sens. Actuators B, 2001, vol. 80, p. 21.

    Article  CAS  Google Scholar 

  26. Hasanpour, F., Taei, M., Banitaba, S., and Heidari, M., Template synthesis of maghemite nanoparticle in carboxymethyl cellulose and its application for electrochemical cabergoline sensing, Mater. Sci. Eng. C, 2017, vol. 76, p. 88.

    Article  CAS  Google Scholar 

  27. Del Dotto, P. and Bonuccelli, U., Clinical pharmacokinetics of cabergoline, Clin. Pharmacokinet., 2003, vol. 42, p. 633.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the Research Council of Payame Noor University for support this work and Mrs Atefeh Naghsh for review the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Fouladgar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoumeh Taei, Masoud Fouladgar Solid-State Synthesis of SnO2–Zn2SnO4 Nanocomposite and Its Application for Electrochemical Detection of Cabergoline as Dopamine Receptor Antagonists. Russ J Electrochem 58, 1–9 (2022). https://doi.org/10.1134/S1023193522010141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522010141

Keywords:

Navigation