Skip to main content
Log in

Cathodic Reduction of Zinc Oxide in Alkaline Electrolyte

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The reduction of zinc oxide in a limited volume of the alkaline electrolyte is studied. Methods of chronopotentiometry, chronoamperometry, and chronovoltammetry showed the recovery of zinc oxide in a minimum volume of electrolyte to be a complex process, not obeying the mathematical dependences for the limiting stages of electrochemical processes known in literature. A mathematical model of the zinc-oxide layer recovery in terms of the minimum amount of alkaline electrolyte is suggested. The model takes into account the zincate- and hydroxyl-ion transport in the alkaline electrolyte, the zinc oxide dissolution, and changes of structural characteristics in the surface oxide layer. The reduction of zinc oxide in a limited volume of alkaline electrolyte is shown to be largely determined by the rate of the chemical reaction of zinc oxide dissolution. The applicability of the revealed regularities of the zinc oxide reduction in zincate solutions to the describing of the zinc electrode charging process in alkaline power sources is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Korovin, N.V. and Skundin, A.M., Chemical Power Sources: A Handbook (in Russian), Moscow: Mos. Energ. Inst., 2003.

    Google Scholar 

  2. Edison, T.A., Reversible galvanic battery, US Patent 684204, 1901.

  3. Drumm, J.J., Storage battery, US Patent 1955115, 1934.

  4. Arhangel’skaya, Z.P., Flerov, V.N., and Reshetova G.N., Trends and Perspectives of R&D in Nickel–Zinc Batteries (in Russian), Moscow: Informelektro, 1978.

    Google Scholar 

  5. Acmepower. URL: http://acmepower.ru/.

  6. Shenzhen BetterPower Battery Co., LTD. URL: http://en.betterpower.com.cn/.

  7. VARTA Microbattery – Website. URL: http:// www.varta-microbattery.com/en.html.

  8. Bychkovskij, S.K., Baharev, S.A., and Nikiforov, V.I., High-performance air–zinc cell, Pat. 2349991 (Russia), 2009.

  9. Shkarupo, S.P., Oxygen–Zinc power source, Pat. 128783 (Russia), 2012.

  10. Diggle, J.W., Despic, A.R., and Bockris, J.O’M., The mechanism of the dendritic crystallization of zinc, Int. J. Electrochem. Sci., 1969, vol. 116, no. 11, p. 1503.

    Article  CAS  Google Scholar 

  11. Bazarov, S.P., Bachaev, A.A., Elkind, K.M., Flerov, V.N., Arkhangelskaya, Z.P., and Reshetova, G.N., Redistribution of active mass in zinc electrodes during the cycling of nickel–zinc batteries, Collection of Scientific Papers of All-Russ. Res. Battery Inst. (in Russian), Leningrad: Energoatomizdat, 1983.

    Google Scholar 

  12. Butler, J.N., Ionic Equilibrium: A Mathematical Approach, Reading, MA: Addiction, Wesley, 1964.

  13. Farr, G.P.G. and Hampson, M.A., Evolution of characteristics of exchange reactions. 1. Exchange reactions at a solid zinc electrode in alkaline, J. Electroanal. Chem., 1967, vol. 13, no. 4, p. 433.

    Article  CAS  Google Scholar 

  14. Dirkse, T.P. and Hampson, N.A., The Zn(II)/Zn exchange reactions in KOH solution. III. Exchange current measurements using the potentiostatic method, Electrochim. Acta, 1972, vol. 17, no. 6, p. 1113.

    Article  CAS  Google Scholar 

  15. Gerischer, H., Kinetik der Entladung einfacher und komplexer Zinc Ionen, Z. Physik. Chem., 1953, vol. 202, p. 302.

    Article  CAS  Google Scholar 

  16. Witt, P.H. and Bard, A.J., The mechanism of the zinc(II)-zinc amalgam electrode reaction in alkaline media as studied by chronocoulometric and voltametric techniques, J. Electrochem. Soc., 1972, vol. 119, no. 12, p. 1665.

    Article  Google Scholar 

  17. Revina, E.M., Rotinyan, A.L., and Shoshina, I.A., Behavior of an active zinc electrode in alkaline and zincate solutions, Zh. Prikl. Khim. (in Russian), 1973, vol. 46, no. 12, p. 2654.

    CAS  Google Scholar 

  18. Bockris, J.O.M., Nagy, Z., and Damjanovic, A., On the deposition and dissolution of zinc in alkaline solutions, J. Electrochem. Soc., 1972, vol. 119, no. 3, p. 285.

    Article  CAS  Google Scholar 

  19. Epelboin, J., Ksouri, M., Wiart, E., and Lejay, R., The mechanism of the zinc electrode reaction in alkali, Electrochim. Acta, 1975, vol. 20, no. 8, p. 603.

    Article  CAS  Google Scholar 

  20. Ioffe, A.F., Semiconductors (in Russian), Moscow: Akademkniga, 1955.

    Google Scholar 

  21. Hladik, O. and Schwabe, K., Untersuchungen zum nachweise der direkten Reduktion von Zincoxide in der festen Phase, Electrochim. Acta, 1970, vol. 15, no. 4, p. 635.

    Article  CAS  Google Scholar 

  22. Osche, A.I. and Bagotsky, V.S., On the mechanism of cathodic reduction of oxide phase layers on a zinc electrode, Zh. Fiz. Khim. (in Russian), 1961, vol. 35, no. 7, p. 1641.

    Google Scholar 

  23. Dirkse, T.P., Composition and properties of saturated solutions of ZnO in KOH, J. Electrochem. Soc., 1959, vol. 106, no. 2, p. 154.

    Article  CAS  Google Scholar 

  24. Drazic, D. and Nagy, Z., Investigation of direct reduction of zinc oxide alkaline electrolytes, J. Electrochem. Soc., 1971, vol. 118, no. 2, p. 255.

    Article  CAS  Google Scholar 

  25. Landsberg, H., Fürtig, H., and Müller, M., Zum anodischen Verhalten des Zink und Zinkoksid in Natronlange, Z. Phys. Chem., 1961, vol. 216, no. 3/4, p. 199.

    Google Scholar 

  26. Kudryavtsev, T.N., Beck, R.Yu., and Kushevich, I.F., On the causes of local spongy formations at the cathode in zinc electrolytes, Zh. Prikl. Khim. (in Russian), 1957, vol. 30, no. 7, p. 1093.

    CAS  Google Scholar 

  27. Flerov, V.N., The effect of aging on the cathode process in zinc electrolytes. Proc. of the Zhdanov State Res Inst. Chem. Chem. Technol. Substances (in Russian), 1961, no. 13, vol. 5, p. 56.

    Google Scholar 

  28. Romanov, V.V., Investigation of the causes of zincate sponge formation during the electrolysis of zincate solutions, Zh. Prikl. Khim. (in Russian), 1963, vol. 36, no. 5, p. 1057.

    CAS  Google Scholar 

  29. Stender, R.V. and Zholudev, M.D., Electrolysis of sodium zincate solutions, Zh. Prikl. Khim. (in Russian), 1959, vol. 32, no. 6, p. 1296.

    CAS  Google Scholar 

  30. Elkind, K.M., Naumov, V.I., and Mikhalenko, M.G., On the mechanism of cathodic isolation of zinc from potassium-zincate electrolytes, Izv VUZov SSSR. Series: Chem. Chem. Technol. (in Russian), 1977, vol. 20, no. 6, p. 870.

    CAS  Google Scholar 

  31. Elkind, K.M., Mikhalenko, M.G., and Flerov, V.N., Mechanism of cathode sponge formation during zinc deposition from zinc electrolytes, Izv VUZov SSSR. Series: Chem. Chem. Technol. (in Russian), 1982, vol. 25, no. 7, p. 862.

    CAS  Google Scholar 

  32. Moskvichev, A.A., Kozina, O.L., Gunko, Yu.L., Mikhalenko, M.G., and Moskvichev, A.N., Mathematical simulation of charging of process for porous cadmium electrode in alkaline batteries, Russ. J. Electrochem., 2011, vol. 47, p. 825.

    Article  CAS  Google Scholar 

  33. Mikhalenko, M.G. and Flerov, V.N., Electrochemical determination of the diffusion rate of zincate through hydrate-cellulose separation, Sov. Electrochem., 1972, vol. 8, no. 1, p. 81.

    CAS  Google Scholar 

  34. Reshetova, G.N. and Arkhangelskaya, Z.P., Makrokinetika protsessov na zinkovom elektrode alkaline sources of current, Coll. Works on Chem. power sources (in Russian), 1975, no. 10, 268 p.]

  35. Sunni, W.G. and Bennion, D.N., Transient and failure analyses of the porous zinc electrode, J. Electrochem. Soc., 1980, vol. 127, p. 2007.

    Article  Google Scholar 

  36. Murashova, I.B., Pomosov, A.V., and Tishkina, A.V., Dynamic model of dispersed sediment development under galvanostatic conditions. Influence of the nature of the discharged metal on the dynamics of dendrite growth, Sov. Electrochem., 1982, vol. 18, p. 449.

    CAS  Google Scholar 

  37. Ostanina, T.N., Rudoi, V.M., Patrushev, A.V., Darintseva, A.B., and Farlenkov, A.S., Modelling the dynamic growth of copper and Zink dendritic deposits under the galvanostatic electrolysis conditions, J. Electroanal. Chem., 2015, vol. 750, p. 9.

    Article  CAS  Google Scholar 

  38. Murashova, I.B., Pomosov, A.V., and Edeleva, N.A., Dynamic model of dispersed sediment development under galvanostatic conditions, Effect of electrolyte acidity on the kinetics of dendrite growth, Sov. Electrochem., 1979, vol. 15, no. 2, p. 182.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. L. Gunko or E. Yu. Ananieva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunko, Y.L., Kozyrin, V.A., Kozina, O.L. et al. Cathodic Reduction of Zinc Oxide in Alkaline Electrolyte. Russ J Electrochem 58, 60–73 (2022). https://doi.org/10.1134/S1023193522010050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522010050

Keywords:

Navigation