Skip to main content
Log in

Galvanostatic Discharge of Lithium–Oxygen Battery: The Influence of the Active Layer Thickness on the Positive Electrode Characteristics

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The results of digital simulation of the lithium peroxide formation during the lithium–oxygen battery discharge are presented. The active layer of the positive electrode is described by the simplest monoporous model of a porous medium (a set of sinuous homogeneous non-intersecting pores of constant radius). The influence of the active layer thickness on the positive electrode dimensional characteristics during the galvanostatic discharge of the lithium–oxygen battery is investigated. The dependence of the discharge capacity on the positive electrode active layer thickness was shown to have an extreme character. With increase in the positive electrode active layer thickness the initial section of the increase in the calculated capacity is replaced by a section of a decrease in the capacity. It was found that the process of lithium peroxide molecules’ generation mainly occurs within a narrow region where the pore mouths are in contact with the gas phase. The calculations show that the optimal thickness of the positive electrode active layer is very small (of the order of tens of microns).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Here and below, the term “the specific capacity” means the capacity per the positive electrode geometrical surface area (mA h/cm2).

REFERENCES

  1. Zhang, X.-Q., Zhao, C.-Z., Huang, J.-Q., and Zhang, Q., Recent Advances in Energy Chemical Engineering of Next-Generation Lithium Batteries, Engineering, 2018, vol. 4, p. 831.

    Article  CAS  Google Scholar 

  2. Shu, C., Wang, J., Long, J., Liu, H.-K., and Dou, S.-X., Understanding the Reaction Chemistry during Charging in Aprotic Lithium–Oxygen Batteries: Existing Problems and Solutions, Adv. Mater., 2019, vol. 31, p. 1804587.

    Article  Google Scholar 

  3. Tarasevich, M.R., Andreev, V.N., Korchagin, O.V., and Tripachev, O.V., Lithium–oxygen (air) batteries (state-of-the-art and perspectives), Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 1.

  4. Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., and Hendrickson, M.A., Elucidating the mechanism of oxygen reduction for lithium-air battery applications, J. Phys. Chem. C, 2009, vol. 113, p. 20127.

    Article  CAS  Google Scholar 

  5. Liu, C., Sato, K., Han, X.-B., and Ye, S., Reaction mechanisms of the oxygen reduction and evolution reactions in aprotic solvents for Li–O2 batteries, Curr. Opin. Electrochem., 2019, vol. 14, p. 151.

    Article  CAS  Google Scholar 

  6. Ottakam Thotiyl, M.M., Freunberger, S.A., Peng, Z., and Bruce, P.G., The Carbon Electrode in Nonaqueous Li–O2 Cells, J. Am. Chem. Soc., 2013, vol. 135, p. 494.

    Article  CAS  Google Scholar 

  7. Tarasevich, M.R., Korchagin, O.V., and Tripachev, O.V., Comparative Study of Special Features of the Oxygen Reaction (Molecular Oxygen Ionization and Evolution) in Aqueous and Nonaqueous Electrolyte Solutions (a Review), Russ. J. Electrochem., 2018, vol. 54, p. 1.

    Article  CAS  Google Scholar 

  8. Liu, T., Leskes, M., Yu, W., Moore, A.J., Zhou, L., Bayley, P.M., Kim, G., and Grey, C.P., Cycling Li–O2 batteries via LiOH formation and decomposition, Science, 2015, vol. 350, p. 530.

    Article  CAS  Google Scholar 

  9. Gao, J., Cai, X., Wang, J., Hou, M., Lai, L., and Zhang, L., Recent progress in hierarchically structured O2-cathodes for Li–O2 batteries, Chem. Eng. J., 2018, vol. 352, p. 972.

    Article  CAS  Google Scholar 

  10. Wang, H., Wang, H., Huang, J., Zhou, X., Wu, Q., Luo, Z., and Wang, F., Hierarchical Mesoporous/Macroporous Co-doped NiO Nanosheet Arrays as Free-standing Electrode Materials for Rechargeable Li–O2 Batteries, ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 44556.

    Article  CAS  Google Scholar 

  11. Bogdanovskaya, V.A., Chirkov, Y.G., Rostokin, V.I., Yemetz, V.V., Korchagin, O.V., Andreev, V.N., and Tripachev, O.V., The Effect of the Structure of a Positive Electrode on the Process of Discharge of a Lithium–Oxygen Power Source. The Monoporous Cathode Theory, Prot. Met. Phys. Chem. Surf., 2018, vol. 54, p. 1015.

    Article  CAS  Google Scholar 

  12. Chen, W., Yin, W., Shen, Y., Huang, Z., Li, X., Wang, F., Zhang, W., Deng, Z., Zhang, Z., and Huang, Y., High areal capacity, long cycle life Li–O2 cathode based on highly elastic gel granules, Nano Energy, 2018, vol. 47, p. 353.

    Article  CAS  Google Scholar 

  13. Jiang, J., Deng, H., Li, X., Tong, S., He, P., and Zhou, H., Research on Effective Oxygen Window Influencing the Capacity of Li–O2 Batteries, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 10375.

    Article  CAS  Google Scholar 

  14. Spencer, M.A. and Augustyn, V., Free-standing transition metal oxide electrode architectures for electrochemical energy storage, J. Mater. Sci., 2019, vol. 54, p. 13045.

    Article  CAS  Google Scholar 

  15. Nomura, A., Ito, K., and Kubo, Y., CNT Sheet Air Electrode for the Development of Ultra-High Cell Capacity in Lithium–Air Batteries, Sci. Rep., 2017, vol. 7, p. 45596.

    Article  CAS  Google Scholar 

  16. Xiao, J., Wang, D., Xu, W., Wang, D., Williford, R.E., Liu, J., and Zhang, J.-G., Optimization of Air Electrode for Li/Air Batteries, J. Electrochem. Soc., 2010, vol. 157, p. A487.

    Article  CAS  Google Scholar 

  17. Landa-Medrano, I., Pinedo, R., Ruiz de Larramendi, I., Ortiz-Vitoriano, N., and Rojo, T., Monitoring the Location of Cathode-Reactions in Li–O2 Batteries, J. Electrochem. Soc., 2015, vol. 162, p. A3126.

    Article  CAS  Google Scholar 

  18. Lin, Y., Moitoso, B., Martinez-Martinez, C., Walsh, E.D., Lacey, S.D., Kim, J.-W., Dai, L., Hu, L., and Connell, J.W., Ultrahigh-Capacity Lithium–Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes, Nano Lett., 2017, vol. 17, p. 3252.

    Article  CAS  Google Scholar 

  19. Li, J., Su, Z., Zhang, T., Li, Q., Yu, M., Zhang, X., and Sun, H., Highly Efficient Li–Air Battery Using Ultra-Thin Air Electrode, J. Electrochem. Soc., 2019, vol. 166, p. A3606.

    Article  CAS  Google Scholar 

  20. Bao, J., Hu, W., Bhattacharya, P., Stewart, M., Zhang, J.-G., and Pan, W., Discharge performance of Li–O2 batteries using a multiscale modeling approach, J. Phys. Chem. C., 2015, vol. 119, p. 14851.

    Article  CAS  Google Scholar 

  21. Chirkov, Y.G., Korchagin, O.V., Andreev, V.N., Bogdanovskaya, V.A., and Rostokin, V.I., Dischage of Lithium–Oxygen Power Source: Effect of Active Layer Thickness and Current Density on Overall Characteristics of Positive Electrode, in: Advances in Intelligent Systems and Computing, Silhavy, R., Silhavy, P., and Prokopova, Z., Eds., Springer, 2019, vol. 1047, p. 52.

    Google Scholar 

  22. Chirkov, Y.G., Rostokin, V.I., Andreev, V.N., and Bogdanovskaya, V.A., Digital Simulation of the Structure and Operation Mechanisms for the Active layer of Lithium–Oxygen Battery Cathode, Russ. J. Electrochem., 2020, vol. 56, p. 230.

    Article  CAS  Google Scholar 

  23. Chirkov, Yu.G., Rostokin, V.I., Andreev, V.N., Bogdanovskaya, V.A., and Korchagin, O.V., Lithium–Oxygen Power Source: The Influence of Positive Electrode Thickness on the Overall Discharge Characteristics, Russ. J. Electrochem., 2020, vol. 56, p. 596.

    Article  CAS  Google Scholar 

  24. Sandhu, S., Fellner, J., and Brutchen, G., Diffusion-limited model for a lithium/air battery with an organic electrolyte, J. Power Sources, 2007, vol. 164, p. 365.

    Article  CAS  Google Scholar 

  25. Dabrowski, T., Struck, A., Fenske, D., Maaß, P., and Colombi, L.C., Optimization of Catalytically Active Sites Positioning in Porous Cathodes of Lithium/Air Batteries Filled with Different Electrolytes, J. Electrochem. Soc., 2015, vol. 162, p. A2796.

    Article  CAS  Google Scholar 

  26. Read, J., Mutolo, K., Ervin, M., Behl, W., Wolfenstine, J., Driedger, A., and Foster, D., Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery, J. Electrochem. Soc., 2003, vol. 150, p. A1351.

    Article  CAS  Google Scholar 

  27. Chirkov, Y.G., Andreev, V.N., Rostokin, V.I., and Bogdanovskaya, V.A., Discharge of Lihium–Oxygen Power Source: The Monoporous Cathode Theory and Role of Constant of Oxygen Consumption Process, Al’ternativnaya Energetika Ekologiya (in Russian), 2018, nos. 4–6, p. 95.

  28. Pan, W., Yang, X., Bao, J., and Wang, M., Optimizing discharge capacity of Li–O2 Batteries dy design of air-electrode porous structure: Multifidelity modeling and optimization, J. Electrochem. Soc., 2017, vol. 164, p. E3499.

    Article  CAS  Google Scholar 

  29. Louis, C. and Benoit, R.L., The electrochemical reduction of oxygen in sulpholane, Electrochim. Acta, 1973, vol. 18, p. 7.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of science and higher education of RF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. G. Chirkov, V. I. Rostokin, O. V. Korchagin, V. N. Andreev or V. A. Bogdanovskaya.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirkov, Y.G., Rostokin, V.I., Korchagin, O.V. et al. Galvanostatic Discharge of Lithium–Oxygen Battery: The Influence of the Active Layer Thickness on the Positive Electrode Characteristics. Russ J Electrochem 58, 50–59 (2022). https://doi.org/10.1134/S1023193522010049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522010049

Keywords:

Navigation