Skip to main content
Log in

Effect of Plating Parameters on Composition of Electroless Co-Deposited PdAg Membrane

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The equations for the concentration of metallic ions in the electroless plating solution have been derived. They are used to predict the effect of plating para- meters(i.e. pH, the concentration of ethylenediaminetetraacetic acid disodium salt (Na2EDTA) and plating temperature) on membrane composition in Pd‒Ag electroless plating theoretically. The experiments have shown that more palladium was deposited as the concentration of Na2EDTA and pH was increased, while the temperature was decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Lin, Y.-M. and Rei, M.-H., Separation of hydrogen from the gas mixture out of catalytic reformer by using supported palladium membrane, Sep. Purif. Technol., 2001, vol. 25, p. 87.

    Article  CAS  Google Scholar 

  2. Bruni, G., Rizzello, C., Santucci, A., Alique, D., Incelli, M., and Tosti, S., On the energy efficiency of hydrogen production processes via steam reforming using membrane reactors, Int. J. Hydrogen Energy, 2019, vol. 44, p. 988.

    Article  CAS  Google Scholar 

  3. Dittmeyer, R., Höllein, V., and Daub, K., Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium, J. Mol. Catal. A: Chem., 2001, vol. 173, p. 135.

    Article  CAS  Google Scholar 

  4. Zhao, C., Xu, H., and Goldbach, A., Duplex Pd/ceramic/Pd composite membrane for sweep gas-enhanced CO2 capture, J. Membr. Sci., 2018, vol. 563, p. 388.

    Article  CAS  Google Scholar 

  5. Li, A., Liang, W., and Hughes, R., Fabrication of dense palladium composite membranes for hydrogen separation, Catal. Today, 2000, vol. 56, p. 45.

    Article  CAS  Google Scholar 

  6. Ryi, S.-K., Xu, N., Li, A., Lim, C.J., and Grace, J.R., Electroless Pd membrane deposition on alumina modified porous Hastelloy substrate with EDTA-free bath, Int. J. Hydrogen Energy, 2010, vol. 35, p. 2328.

    Article  CAS  Google Scholar 

  7. Chen, W., Hu, X., Wang, R., and Huang, Y., On the assembling of Pd/ceramic composite membranes for hydrogen separation, Sep. Purif. Technol., 2010, vol. 72, p. 92.

    Article  CAS  Google Scholar 

  8. Knapton, A.G., Palladium alloys for hydrogen diffusion membranes, Platinum Met. Rev., 1977, vol. 21, p. 44.

    Article  CAS  Google Scholar 

  9. Li, H., Pieterse, J.A.Z., Dijkstra, J.W., Haije, W.G., Xu, H.Y., and Bao, C., Performance test of a bench-scale multi-tubular membrane reformer, J. Membr. Sci., 2011, vol. 373, p. 43.

    Article  CAS  Google Scholar 

  10. Maneerung, T., Hidajat, K., and Kawi, S., Ultra-thin (<1 μm) internally-coated Pd–Ag alloyhollow fiber membrane with superior thermal stability and durability for high temperature H2 separation, J. Membr. Sci., 2014, vol. 45, p. 127.

    Article  Google Scholar 

  11. Ghasemzadeh, K., Khosravi, M., Sadati Tilebon, S.M., Ghaeinejad-Meybodi, A., and Basile, A., Theoretical evaluation of Pd Ag membrane reactor performance during biomass steam gasification for hydrogen production using CFD method, Int. J. Hydrogen Energy, 2018, vol. 43, p. 117.

    Google Scholar 

  12. Melendez, J., Fernandez, E., Gallucci, F., van Sint Annaland, M., Arias, P.L., and Tanaka, D.A.P., Preparation and characterization of ceramic supported ultra-thin (~1 μm) Pd–Ag membranes, J. Membr. Sci., 2017, vol. 528, p. 12.

    Article  CAS  Google Scholar 

  13. Vásquez Castillo, J.M., Sato, T., and Itoh, N., Effect of temperature and pressure on hydrogen production from steam reforming of biogas with Pd–Ag membrane reactor, Int. J. Hydrogen Energy, 2015, vol. 40, p. 3582.

    Article  Google Scholar 

  14. Alique, D., Martinez-Diaz, D., Sanz, R., and Calles, J.A., Review of supported Pd-based membranes preparation by electroless plating for ultra-pure hydrogen production, Membrane, 2018, vol. 8, p. 1.

    Google Scholar 

  15. Fernandez, E., Helmi, A., Coenen, K., Melendez, J., Viviente, J.L., Tanaka, D.A.P., Annaland, M.S., and Gallucci, F., Development of thin Pd–Ag supported membranes for fluidized bed membrane reactors including WGS related gases, Int. J. Hydrogen Energy, 2015, vol. 40, p. 3506.

    Article  CAS  Google Scholar 

  16. Checchetto, R., Bazzanella, N., Patton, B., and Miotello, A., Palladium membranes prepared by r.f. magnetron sputtering for hydrogen purification, Surf. Coat. Technol., 2004, vol. 177, p. 73.

    Article  Google Scholar 

  17. Huang, L., Chen, C.S., He, Z.D., Peng, D.K., and Meng, G.Y., Palladium membranes supported on porous ceramics prepared by chemical vapor deposition, Thin Solid Films, 1997, vol. 302, p. 98.

    Article  CAS  Google Scholar 

  18. Sumrunronnasak, S., Tantayanon, S., and Kiatgamolchai, S., Influence of layer compositions and annealing conditions on complete formation of ternary PdAgCu alloys prepared by sequential electroless and electroplating methods, Mater. Chem. Phys., 2017, vol. 185, p. 98.

    Article  CAS  Google Scholar 

  19. Pujari, M., Agarwal, A., Uppaluri, R., and Verma, A., Role of electroless nickel diffusion barrier on the combinatorial plating characteristics of dense Pd/Ni/PSS composite membranes, Appl. Surf. Sci., 2014, vol. 305, p. 658.

    Article  CAS  Google Scholar 

  20. Zhang, D., Zhou, S., Fan, Y., Xu, N., and He, Y., Preparation of dense Pd composite membranes on porous Ti–Al alloy supports by electroless plating, J. Membr. Sci., 2012, vols. 387–388, p. 24.

    Article  Google Scholar 

  21. Martinez-Diaz, D., Sanz, R., Calles, J.A., and Alique, D., H2 permeation increase of electroless pore-plated Pd/PSS membranes with CeO2 intermediate barriers, Sep. Purif. Technol., 2019, vol. 216, p. 16.

    Article  CAS  Google Scholar 

  22. Chotirach, M., Tantayanon, S., Tungasmita, S., and Kriausakul, K., Zr-based intermetallic diffusion barriers for stainless steel supported palladium membranes, J. Membr. Sci., 2012, vol. 405–406, p. 92.

    Article  Google Scholar 

  23. Cheng, Y.S. and Yeung, K.L., Palladium–silver composite membranes by electroless plating technique, J. Membr. Sci., 1999, vol. 158, p. 127.

    Article  CAS  Google Scholar 

  24. Bindra, P., Light, D., and Rath, D., Mechanisms of electroless metal plating: 1. Mixed potential theory and the interdependence of partial reactions, IBM J. RES. DEVELOP., 1984, vol. 28, p. 668.

    Article  Google Scholar 

  25. Shu, J., Grandjean, B.P.A., Ghali, E., and Kaliaguine, S., Simultaneous deposition of Pd and Ag on porous stainless steel by electroless plating, J. Membr. Sci., 1993, vol. 77, p. 181.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chol-Man Pak.

Ethics declarations

Authors announce that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chol-Man Pak, Han, UC., Kang, HJ. et al. Effect of Plating Parameters on Composition of Electroless Co-Deposited PdAg Membrane. Russ J Electrochem 57, 1207–1212 (2021). https://doi.org/10.1134/S1023193521110069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521110069

Keywords:

Navigation